Tracking a ballistic object on reentry: performance bounds and comparison of nonlinear filters

B. Ristic, A. Farina, D. Benvenuti
{"title":"Tracking a ballistic object on reentry: performance bounds and comparison of nonlinear filters","authors":"B. Ristic, A. Farina, D. Benvenuti","doi":"10.1109/IDC.2002.995408","DOIUrl":null,"url":null,"abstract":"Tracking of a ballistic reentry object from radar observations is a highly complex problem in nonlinear filtering. We derive the Cramer-Rao lower bounds (CRLBs) for the variance of the estimation error for this problem. Subsequently we compare several nonlinear filtering techniques to the derived CRLBs. The considered nonlinear filters include the extended Kalman filter, the unscented Kalman filter and the bootstrap (particle) filter. Considering the computational and statistical performance, the unscented Kalman filter is found to be the preferred choice for this application.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tracking of a ballistic reentry object from radar observations is a highly complex problem in nonlinear filtering. We derive the Cramer-Rao lower bounds (CRLBs) for the variance of the estimation error for this problem. Subsequently we compare several nonlinear filtering techniques to the derived CRLBs. The considered nonlinear filters include the extended Kalman filter, the unscented Kalman filter and the bootstrap (particle) filter. Considering the computational and statistical performance, the unscented Kalman filter is found to be the preferred choice for this application.
跟踪再入弹道目标:非线性滤波器的性能界限和比较
基于雷达观测的弹道再入目标跟踪是非线性滤波中一个非常复杂的问题。我们导出了该问题估计误差方差的Cramer-Rao下界。随后,我们将几种非线性滤波技术与衍生的crlb进行了比较。所考虑的非线性滤波器包括扩展卡尔曼滤波器、无气味卡尔曼滤波器和自举(粒子)滤波器。考虑到计算性能和统计性能,无气味卡尔曼滤波器是该应用的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信