Cholesky factors based wavelet transform domain LMF algorithm

M. Moinuddin, A. Zerguine
{"title":"Cholesky factors based wavelet transform domain LMF algorithm","authors":"M. Moinuddin, A. Zerguine","doi":"10.1109/IEEEGCC.2006.5686209","DOIUrl":null,"url":null,"abstract":"This paper presents a new wavelet transform domain least mean fourth (LMF) algorithm. The algorithm exploits the special sparse structure of the wavelet transform of wide classes of correlation matrices and their Cholesky factors in order to compute a whitening transformation of the input data in the wavelet domain and minimize computational complexity. This method explicitly computes a sparse estimate of the wavelet domain correlation matrix of the input process. It then computes the Cholesky factor of that matrix and uses its inverse to whiten the input. The proposed algorithm has faster convergence rate than that of wavelet transform domain least mean square (LMS) algorithm.","PeriodicalId":433452,"journal":{"name":"2006 IEEE GCC Conference (GCC)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE GCC Conference (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2006.5686209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new wavelet transform domain least mean fourth (LMF) algorithm. The algorithm exploits the special sparse structure of the wavelet transform of wide classes of correlation matrices and their Cholesky factors in order to compute a whitening transformation of the input data in the wavelet domain and minimize computational complexity. This method explicitly computes a sparse estimate of the wavelet domain correlation matrix of the input process. It then computes the Cholesky factor of that matrix and uses its inverse to whiten the input. The proposed algorithm has faster convergence rate than that of wavelet transform domain least mean square (LMS) algorithm.
基于Cholesky因子的小波变换域LMF算法
提出了一种新的小波变换域最小平均四次(LMF)算法。该算法利用广类相关矩阵的小波变换及其Cholesky因子的特殊稀疏结构,在小波域内对输入数据进行白化变换,使计算复杂度最小化。该方法明确地计算输入过程的小波域相关矩阵的稀疏估计。然后计算该矩阵的Cholesky因子,并使用它的逆来白化输入。该算法具有比小波变换域最小均方(LMS)算法更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信