An Approach to Tracking Problem for Linear Control System Via Invariant Ellipsoids Method

M. Khlebnikov
{"title":"An Approach to Tracking Problem for Linear Control System Via Invariant Ellipsoids Method","authors":"M. Khlebnikov","doi":"10.5121/CSIT.2019.90714","DOIUrl":null,"url":null,"abstract":"In this paper, a simple yet universal approach to the tracking problem for linear control systems via the linear static combined feedback is proposed. The approach is based on the invariant ellipsoid concept and LMI technique, where the optimal control design reduced to finding the minimal invariant ellipsoid for the closed-loop system. With such an ideology, the control design problem directly reduces to a semidefinite programming and one-dimensional minimization. Another attractive property of the proposed approach is that it is equally applicable to discrete-time control systems. The efficacy of the technique is illustrated via a benchmark problem.","PeriodicalId":383682,"journal":{"name":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a simple yet universal approach to the tracking problem for linear control systems via the linear static combined feedback is proposed. The approach is based on the invariant ellipsoid concept and LMI technique, where the optimal control design reduced to finding the minimal invariant ellipsoid for the closed-loop system. With such an ideology, the control design problem directly reduces to a semidefinite programming and one-dimensional minimization. Another attractive property of the proposed approach is that it is equally applicable to discrete-time control systems. The efficacy of the technique is illustrated via a benchmark problem.
用不变椭球法求解线性控制系统的跟踪问题
本文提出了一种简单而又通用的线性控制系统静态组合反馈跟踪方法。该方法基于不变椭球概念和LMI技术,将最优控制设计简化为寻找闭环系统的最小不变椭球。在这种思想下,控制设计问题直接化为半定规划和一维最小化问题。所提出的方法的另一个吸引人的特性是它同样适用于离散时间控制系统。通过一个基准问题说明了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信