Tuning of a fuzzy classifier derived from data

S. Abe, M. Lan, R. Thawonmas
{"title":"Tuning of a fuzzy classifier derived from data","authors":"S. Abe, M. Lan, R. Thawonmas","doi":"10.1109/FUZZY.1994.343835","DOIUrl":null,"url":null,"abstract":"In our previous work (S. Abe and M.S. Lan, 1993), we developed a method for extracting fuzzy rules directly from numerical data for pattern classification. The performance of the fuzzy classifier developed by using this methodology was comparable to the average performance of neural networks. We further develop a least square method for tuning the sensitivity parameters of fuzzy membership functions by which the generalization ability of the classifier is improved. We evaluate the method using the Fisher iris data and data for numeral recognition of vehicle license plates. The results show that when the tuned sensitivity parameters are applied, the recognition rates are improved, to the extent that performance is comparable to or better than the maximum performance obtained by neural networks, but with shorter computational time.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"173 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In our previous work (S. Abe and M.S. Lan, 1993), we developed a method for extracting fuzzy rules directly from numerical data for pattern classification. The performance of the fuzzy classifier developed by using this methodology was comparable to the average performance of neural networks. We further develop a least square method for tuning the sensitivity parameters of fuzzy membership functions by which the generalization ability of the classifier is improved. We evaluate the method using the Fisher iris data and data for numeral recognition of vehicle license plates. The results show that when the tuned sensitivity parameters are applied, the recognition rates are improved, to the extent that performance is comparable to or better than the maximum performance obtained by neural networks, but with shorter computational time.<>
基于数据的模糊分类器的调优
在我们之前的工作(S. Abe和ms . Lan, 1993)中,我们开发了一种直接从数字数据中提取模糊规则用于模式分类的方法。使用该方法开发的模糊分类器的性能与神经网络的平均性能相当。我们进一步发展了一种最小二乘法来调整模糊隶属函数的灵敏度参数,从而提高了分类器的泛化能力。我们使用Fisher虹膜数据和车牌数字识别数据来评估该方法。结果表明,采用调整后的灵敏度参数后,识别率得到了提高,其性能与神经网络的最大性能相当甚至更好,但计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信