Improving Microgrid Short-Term Stability via Model-Predictive Control-Based Setpoint Adjustment

Dakota Hamilton, D. Aliprantis, S. Pekarek, G. Zweigle
{"title":"Improving Microgrid Short-Term Stability via Model-Predictive Control-Based Setpoint Adjustment","authors":"Dakota Hamilton, D. Aliprantis, S. Pekarek, G. Zweigle","doi":"10.1109/PECI54197.2022.9744014","DOIUrl":null,"url":null,"abstract":"A model-predictive controller (MPC) for synchronous generator-based microgrids is introduced to enhance voltage, frequency, and transient stability in fast timescales. The centralized controller uses mathematical models of power system dynamics to predict the evolution of system states over a finite horizon based on information from local state observers and relays. The MPC dynamically adjusts the setpoints of existing primary controls to maximize system stability. To address the computational challenges of a real-time MPC implementation due to nonlinear power system dynamics and short sampling intervals, a trajectory linearization technique is applied to the MPC formulation. The proposed controller is validated on a notional industrial microgrid for a variety of disturbances.","PeriodicalId":245119,"journal":{"name":"2022 IEEE Power and Energy Conference at Illinois (PECI)","volume":"11 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI54197.2022.9744014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A model-predictive controller (MPC) for synchronous generator-based microgrids is introduced to enhance voltage, frequency, and transient stability in fast timescales. The centralized controller uses mathematical models of power system dynamics to predict the evolution of system states over a finite horizon based on information from local state observers and relays. The MPC dynamically adjusts the setpoints of existing primary controls to maximize system stability. To address the computational challenges of a real-time MPC implementation due to nonlinear power system dynamics and short sampling intervals, a trajectory linearization technique is applied to the MPC formulation. The proposed controller is validated on a notional industrial microgrid for a variety of disturbances.
基于模型预测控制的设定值调整提高微电网短期稳定性
介绍了一种用于同步发电机微电网的模型预测控制器(MPC),以提高快速时间尺度下的电压、频率和暂态稳定性。集中式控制器利用电力系统动力学的数学模型,根据局部状态观测器和继电器的信息,在有限视界内预测系统状态的演化。MPC动态调整现有主要控制的设定值,以最大限度地提高系统稳定性。为了解决由于电力系统动力学非线性和采样间隔短而导致的实时MPC实现的计算挑战,将轨迹线性化技术应用于MPC公式。在一个工业微电网上对所提出的控制器进行了各种干扰的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信