Chebyshev Collocation Method for the Fractional Fredholm Integro-Differential Equations

Dilek Varol
{"title":"Chebyshev Collocation Method for the Fractional Fredholm Integro-Differential Equations","authors":"Dilek Varol","doi":"10.53570/jnt.1260801","DOIUrl":null,"url":null,"abstract":"In this study, Chebyshev polynomials have been applied to construct an approximation method to attain the solutions of the linear fractional Fredholm integro-differential equations (IDEs). By this approximation method, the fractional IDE has been transformed into a linear algebraic equations system with the aid of the collocation points. In the method, the conformable fractional derivatives of the Chebyshev polynomials have been calculated in terms of the Chebyshev polynomials. Using the results of these calculations, the matrix relation for the conformable fractional derivatives of Chebyshev polynomials was attained for the first time in the literature. After that, the matrix forms have been replaced with the corresponding terms in the given fractional integro-differential equation, and the collocation points have been used to have a linear algebraic system. Furthermore, some numerical examples have been presented to demonstrate the preciseness of the method. It is inferable from these examples that the solutions have been obtained as the exact solutions or approximate solutions with minimum errors.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"760 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1260801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Chebyshev polynomials have been applied to construct an approximation method to attain the solutions of the linear fractional Fredholm integro-differential equations (IDEs). By this approximation method, the fractional IDE has been transformed into a linear algebraic equations system with the aid of the collocation points. In the method, the conformable fractional derivatives of the Chebyshev polynomials have been calculated in terms of the Chebyshev polynomials. Using the results of these calculations, the matrix relation for the conformable fractional derivatives of Chebyshev polynomials was attained for the first time in the literature. After that, the matrix forms have been replaced with the corresponding terms in the given fractional integro-differential equation, and the collocation points have been used to have a linear algebraic system. Furthermore, some numerical examples have been presented to demonstrate the preciseness of the method. It is inferable from these examples that the solutions have been obtained as the exact solutions or approximate solutions with minimum errors.
分数阶Fredholm积分微分方程的Chebyshev配点法
本文利用Chebyshev多项式构造了求得线性分数阶Fredholm积分微分方程(IDEs)解的近似方法。利用该近似方法,利用配点将分数阶IDE转化为线性代数方程组。在该方法中,用切比雪夫多项式计算了切比雪夫多项式的符合分数阶导数。利用这些计算结果,在文献中首次得到了切比雪夫多项式的符合分数阶导数的矩阵关系。在此基础上,将给定分数阶积分微分方程的矩阵形式替换为相应的项,并利用配点制得线性代数系统。最后,通过数值算例验证了该方法的准确性。从这些例子可以推断,得到的解是精确解或近似解,误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信