{"title":"Density Aware Blue-Noise Sampling on Graphs","authors":"Daniela Dapena, D. Lau, G. Arce","doi":"10.23919/eusipco55093.2022.9909671","DOIUrl":null,"url":null,"abstract":"Efficient sampling of graph signals is essential to graph signal processing. Recently, blue-noise was introduced as a sampling method that maximizes the separation between sampling nodes leading to high-frequency dominance patterns, and thus, to high-quality patterns. Despite the simple inter-pretation of the method, blue-noise sampling is restricted to approximately regular graphs. This study presents an extension of blue-noise sampling that allows the application of the method to irregular graphs. Before sampling with a blue-noise algorithm, the approach regularizes the weights of the edges such that the graph represents a regular structure. Then, the resulting pattern adapts the node's distribution to the local density of the nodes. This work also uses an approach that minimizes the strength of the high-frequency components to recover approximately bandlimited signals. The experimental results show that the proposed methods have superior performance compared to the state-of-the-art techniques.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Efficient sampling of graph signals is essential to graph signal processing. Recently, blue-noise was introduced as a sampling method that maximizes the separation between sampling nodes leading to high-frequency dominance patterns, and thus, to high-quality patterns. Despite the simple inter-pretation of the method, blue-noise sampling is restricted to approximately regular graphs. This study presents an extension of blue-noise sampling that allows the application of the method to irregular graphs. Before sampling with a blue-noise algorithm, the approach regularizes the weights of the edges such that the graph represents a regular structure. Then, the resulting pattern adapts the node's distribution to the local density of the nodes. This work also uses an approach that minimizes the strength of the high-frequency components to recover approximately bandlimited signals. The experimental results show that the proposed methods have superior performance compared to the state-of-the-art techniques.