Extraction Opinion of Social Media in Higher Education Using Sentiment Analysis

bit-Tech Pub Date : 2019-10-30 DOI:10.32877/bt.v2i1.92
T. E. Tarigan, R. C. Buwono, S. Redjeki
{"title":"Extraction Opinion of Social Media in Higher Education Using Sentiment Analysis","authors":"T. E. Tarigan, R. C. Buwono, S. Redjeki","doi":"10.32877/bt.v2i1.92","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to extract social media Twitter opinion on a tertiary institution using sentiment analysis. The results of sentiment analysis will provide input to universities as a form of evaluation of management performance in managing institutions. Sentiment analysis generated using the Naïve Bayes Classifier method which is classified into 4 classes: positive, normal, negative and unknown. This study uses 1000 data tweets used for training data needs. The data is classified manually to determine the sentiment of the tweet. Then 20 tweet data is used for testing. \nThe results of this study produce a system that can classify sentiments automatically with 75% test results for sentiment, some obstacles in processing real-time tweets such as duplicate tweets (spam tweets), Indonesian structures that are quite complex and diverse.","PeriodicalId":405015,"journal":{"name":"bit-Tech","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bit-Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32877/bt.v2i1.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The purpose of this research is to extract social media Twitter opinion on a tertiary institution using sentiment analysis. The results of sentiment analysis will provide input to universities as a form of evaluation of management performance in managing institutions. Sentiment analysis generated using the Naïve Bayes Classifier method which is classified into 4 classes: positive, normal, negative and unknown. This study uses 1000 data tweets used for training data needs. The data is classified manually to determine the sentiment of the tweet. Then 20 tweet data is used for testing. The results of this study produce a system that can classify sentiments automatically with 75% test results for sentiment, some obstacles in processing real-time tweets such as duplicate tweets (spam tweets), Indonesian structures that are quite complex and diverse.
基于情感分析的高等教育社交媒体意见提取
本研究的目的是利用情感分析提取对高等教育机构的社交媒体Twitter意见。情感分析的结果将作为大学管理机构的经营绩效评价的一种形式,提供给大学。使用Naïve贝叶斯分类器方法生成的情感分析,分为4类:积极,正常,消极和未知。本研究使用1000条数据推文用于训练数据需求。这些数据是手动分类的,以确定推文的情绪。然后使用20条tweet数据进行测试。本研究的结果产生了一个系统,可以自动对情绪进行分类,75%的情绪测试结果,处理实时推文的一些障碍,如重复推文(垃圾推文),印度尼西亚结构非常复杂和多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信