Crowd Counting Using Scale-Aware Attention Networks

M. Hossain, M. Hosseinzadeh, Omit Chanda, Yang Wang
{"title":"Crowd Counting Using Scale-Aware Attention Networks","authors":"M. Hossain, M. Hosseinzadeh, Omit Chanda, Yang Wang","doi":"10.1109/WACV.2019.00141","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of crowd counting in images. Given an image of a crowded scene, our goal is to estimate the density map of this image, where each pixel value in the density map corresponds to the crowd density at the corresponding location in the image. Given the estimated density map, the final crowd count can be obtained by summing over all values in the density map. One challenge of crowd counting is the scale variation in images. In this work, we propose a novel scale-aware attention network to address this challenge. Using the attention mechanism popular in recent deep learning architectures, our model can automatically focus on certain global and local scales appropriate for the image. By combining these global and local scale attentions, our model outperforms other state-of-the-art methods for crowd counting on several benchmark datasets.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

In this paper, we consider the problem of crowd counting in images. Given an image of a crowded scene, our goal is to estimate the density map of this image, where each pixel value in the density map corresponds to the crowd density at the corresponding location in the image. Given the estimated density map, the final crowd count can be obtained by summing over all values in the density map. One challenge of crowd counting is the scale variation in images. In this work, we propose a novel scale-aware attention network to address this challenge. Using the attention mechanism popular in recent deep learning architectures, our model can automatically focus on certain global and local scales appropriate for the image. By combining these global and local scale attentions, our model outperforms other state-of-the-art methods for crowd counting on several benchmark datasets.
使用规模感知注意力网络进行人群计数
在本文中,我们考虑了图像中的人群计数问题。给定一个拥挤场景的图像,我们的目标是估计该图像的密度图,其中密度图中的每个像素值对应于图像中相应位置的人群密度。给定估计的密度图,可以通过对密度图中的所有值求和来获得最终的人群计数。人群计数的一个挑战是图像的尺度变化。在这项工作中,我们提出了一种新的规模感知注意力网络来解决这一挑战。使用最近深度学习架构中流行的注意力机制,我们的模型可以自动聚焦于适合图像的某些全局和局部尺度。通过结合这些全局和局部尺度的关注,我们的模型在几个基准数据集上优于其他最先进的人群计数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信