Estimation of linear stochastic systems over a queueing network

M. Epstein, A. Tiwari, Ling Shi, R. Murray
{"title":"Estimation of linear stochastic systems over a queueing network","authors":"M. Epstein, A. Tiwari, Ling Shi, R. Murray","doi":"10.1109/ICW.2005.46","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the standard state estimation problem over a congested packet-based network. The network is modeled as a queue with a single server processing the packets. This provides a framework to consider the effect of packet drops, packet delays and bursty losses on state estimation. We use a modified Kalman Filter with buffer to cope with delayed packets. We analyze the stability of the estimates with varying buffer length and queue size. We use high order Markov chains for our analysis. Simulation examples are presented to illustrate the theory.","PeriodicalId":255955,"journal":{"name":"2005 Systems Communications (ICW'05, ICHSN'05, ICMCS'05, SENET'05)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Systems Communications (ICW'05, ICHSN'05, ICMCS'05, SENET'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICW.2005.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we consider the standard state estimation problem over a congested packet-based network. The network is modeled as a queue with a single server processing the packets. This provides a framework to consider the effect of packet drops, packet delays and bursty losses on state estimation. We use a modified Kalman Filter with buffer to cope with delayed packets. We analyze the stability of the estimates with varying buffer length and queue size. We use high order Markov chains for our analysis. Simulation examples are presented to illustrate the theory.
排队网络上线性随机系统的估计
在本文中,我们考虑了基于拥塞分组的网络上的标准状态估计问题。该网络被建模为具有单个服务器处理数据包的队列。这为考虑丢包、包延迟和突发损失对状态估计的影响提供了一个框架。我们使用改进的带缓冲区的卡尔曼滤波来处理延迟数据包。我们分析了在不同缓冲区长度和队列大小下估计的稳定性。我们使用高阶马尔可夫链进行分析。仿真实例说明了该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信