Structural Entropic Difference: A Bounded Distance Metric for Unordered Trees

R. Connor, Fabio Simeoni, Michael Iakovos
{"title":"Structural Entropic Difference: A Bounded Distance Metric for Unordered Trees","authors":"R. Connor, Fabio Simeoni, Michael Iakovos","doi":"10.1109/SISAP.2009.29","DOIUrl":null,"url":null,"abstract":"We show a new metric for comparing unordered, tree-structured data. While such data is increasingly important in its own right, the methodology underlying the construction of the metric is generic and may be reused for other classes of ordered and partially ordered data. The metric is based on the information content of the two values under consideration, which is measured using Shannon's entropy equations. In essence, the more commonality the values possess, the closer they are. As values in this domain may have no commonality, a good metric should be bounded to represent this. This property has been achieved, but is in tension with triangle inequality.","PeriodicalId":130242,"journal":{"name":"2009 Second International Workshop on Similarity Search and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Similarity Search and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISAP.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We show a new metric for comparing unordered, tree-structured data. While such data is increasingly important in its own right, the methodology underlying the construction of the metric is generic and may be reused for other classes of ordered and partially ordered data. The metric is based on the information content of the two values under consideration, which is measured using Shannon's entropy equations. In essence, the more commonality the values possess, the closer they are. As values in this domain may have no commonality, a good metric should be bounded to represent this. This property has been achieved, but is in tension with triangle inequality.
结构熵差:无序树的有界距离度量
我们展示了一个比较无序的树结构数据的新度量。虽然这些数据本身越来越重要,但是构建度量的方法是通用的,可以重用于其他类别的有序和部分有序数据。度量是基于考虑的两个值的信息含量,使用香农熵方程测量。从本质上讲,价值越具有共性,它们就越接近。由于这个领域中的值可能没有共性,因此应该有一个好的度量来表示这一点。这个性质已经得到了,但与三角不等式是矛盾的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信