ByteSing: A Chinese Singing Voice Synthesis System Using Duration Allocated Encoder-Decoder Acoustic Models and WaveRNN Vocoders

Yu Gu, Xiang Yin, Yonghui Rao, Yuan Wan, Benlai Tang, Yang Zhang, Jitong Chen, Yuxuan Wang, Zejun Ma
{"title":"ByteSing: A Chinese Singing Voice Synthesis System Using Duration Allocated Encoder-Decoder Acoustic Models and WaveRNN Vocoders","authors":"Yu Gu, Xiang Yin, Yonghui Rao, Yuan Wan, Benlai Tang, Yang Zhang, Jitong Chen, Yuxuan Wang, Zejun Ma","doi":"10.1109/ISCSLP49672.2021.9362104","DOIUrl":null,"url":null,"abstract":"This paper presents ByteSing, a Chinese singing voice synthesis (SVS) system based on duration allocated Tacotron-like acoustic models and WaveRNN neural vocoders. Different from the conventional SVS models, the proposed ByteSing employs Tacotron-like encoder-decoder structures as the acoustic models, in which the CBHG models and recurrent neural networks (RNNs) are explored as encoders and decoders respectively. Meanwhile an auxiliary phoneme duration prediction model is utilized to expand the input sequence, which can enhance the model controllable capacity, model stability and tempo prediction accuracy. WaveRNN vocoders are also adopted as neural vocoders to further improve the voice quality of synthesized songs. Both objective and subjective experimental results prove that the SVS method proposed in this paper can produce quite natural, expressive and high-fidelity songs by improving the pitch and spectrogram prediction accuracy and the models using attention mechanism can achieve best performance.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper presents ByteSing, a Chinese singing voice synthesis (SVS) system based on duration allocated Tacotron-like acoustic models and WaveRNN neural vocoders. Different from the conventional SVS models, the proposed ByteSing employs Tacotron-like encoder-decoder structures as the acoustic models, in which the CBHG models and recurrent neural networks (RNNs) are explored as encoders and decoders respectively. Meanwhile an auxiliary phoneme duration prediction model is utilized to expand the input sequence, which can enhance the model controllable capacity, model stability and tempo prediction accuracy. WaveRNN vocoders are also adopted as neural vocoders to further improve the voice quality of synthesized songs. Both objective and subjective experimental results prove that the SVS method proposed in this paper can produce quite natural, expressive and high-fidelity songs by improving the pitch and spectrogram prediction accuracy and the models using attention mechanism can achieve best performance.
中文唱腔合成系统:使用时长分配的编解码器声学模型和WaveRNN声码器
本文介绍了一种基于时间分配的类tacotron声学模型和WaveRNN神经声码器的中文歌声合成系统ByteSing。与传统的SVS模型不同,本文提出的ByteSing模型采用了类似tacotron的编码器-解码器结构作为声学模型,其中CBHG模型和循环神经网络(rnn)分别作为编码器和解码器。同时利用辅助音素时长的预测模型扩展输入序列,增强了模型的可控能力、稳定性和节奏预测精度。还采用WaveRNN声码器作为神经声码器,进一步提高合成歌曲的音质。客观和主观实验结果都证明,本文提出的SVS方法通过提高音高和谱图预测精度,可以产生相当自然、富有表现力和高保真度的歌曲,使用注意机制的模型可以达到最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信