Analysis of the DNN-based SRE systems in multi-language conditions

Ondrej Novotný, P. Matejka, O. Glembek, Oldrich Plchot, F. Grézl, L. Burget, J. Černocký
{"title":"Analysis of the DNN-based SRE systems in multi-language conditions","authors":"Ondrej Novotný, P. Matejka, O. Glembek, Oldrich Plchot, F. Grézl, L. Burget, J. Černocký","doi":"10.1109/SLT.2016.7846265","DOIUrl":null,"url":null,"abstract":"This paper analyzes the behavior of our state-of-the-art Deep Neural Network/i-vector/PLDA-based speaker recognition systems in multi-language conditions. On the “Language Pack” of the PRISM set, we evaluate the systems' performance using the NIST's standard metrics. We show that not only the gain from using DNNs vanishes, nor using dedicated DNNs for target conditions helps, but also the DNN-based systems tend to produce de-calibrated scores under the studied conditions. This work gives suggestions for directions of future research rather than any particular solutions to these issues.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper analyzes the behavior of our state-of-the-art Deep Neural Network/i-vector/PLDA-based speaker recognition systems in multi-language conditions. On the “Language Pack” of the PRISM set, we evaluate the systems' performance using the NIST's standard metrics. We show that not only the gain from using DNNs vanishes, nor using dedicated DNNs for target conditions helps, but also the DNN-based systems tend to produce de-calibrated scores under the studied conditions. This work gives suggestions for directions of future research rather than any particular solutions to these issues.
多语言条件下基于dnn的SRE系统分析
本文分析了我们最先进的基于深度神经网络/i-vector/ plda的说话人识别系统在多语言条件下的行为。在PRISM集的“语言包”上,我们使用NIST的标准度量来评估系统的性能。我们发现,不仅使用dnn的增益会消失,而且在目标条件下使用专用dnn也不会有帮助,而且在研究条件下,基于dnn的系统往往会产生去校准的分数。这项工作为未来的研究方向提供了建议,而不是针对这些问题的任何特定解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信