Computational Performance of the Parameters Estimation in Extreme Seeking Entropy Algorithm

J. Vrba, J. Mares
{"title":"Computational Performance of the Parameters Estimation in Extreme Seeking Entropy Algorithm","authors":"J. Vrba, J. Mares","doi":"10.23919/AE49394.2020.9232875","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the evaluation of the computational time performance of the algorithms that estimate the parameters of the generalized Pareto distribution, namely Method of Moments, Maximum likelihood estimator and Quasi-maximum likelihood algorithms. The generalized Pareto distribution is utilized by the Extreme Seeking Entropy algorithm to detect novelty in data. The algorithm is evaluating the weight increments of the simple adaptive filter that are obtained via incrementally learning algorithm. The computational time performance is examined in the experiment with the detection of step-change parameters of the signal generator. Its output contains also additive Gaussian noise.","PeriodicalId":294648,"journal":{"name":"2020 International Conference on Applied Electronics (AE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AE49394.2020.9232875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is dedicated to the evaluation of the computational time performance of the algorithms that estimate the parameters of the generalized Pareto distribution, namely Method of Moments, Maximum likelihood estimator and Quasi-maximum likelihood algorithms. The generalized Pareto distribution is utilized by the Extreme Seeking Entropy algorithm to detect novelty in data. The algorithm is evaluating the weight increments of the simple adaptive filter that are obtained via incrementally learning algorithm. The computational time performance is examined in the experiment with the detection of step-change parameters of the signal generator. Its output contains also additive Gaussian noise.
极值求熵算法参数估计的计算性能
本文对广义Pareto分布的参数估计算法,即矩量法、极大似然估计和拟极大似然算法的计算时间性能进行了评价。极值寻熵算法利用广义Pareto分布来检测数据的新颖性。该算法是对通过增量学习算法得到的简单自适应滤波器的权值增量进行评估。通过检测信号发生器的阶跃参数,验证了该方法的计算时间性能。它的输出也包含加性高斯噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信