MapReduce-guided scalable compressed dictionary construction for evolving repetitive sequence streams

P. Parveen, Pratik Desai, B. Thuraisingham, L. Khan
{"title":"MapReduce-guided scalable compressed dictionary construction for evolving repetitive sequence streams","authors":"P. Parveen, Pratik Desai, B. Thuraisingham, L. Khan","doi":"10.4108/ICST.COLLABORATECOM.2013.254135","DOIUrl":null,"url":null,"abstract":"Users' repetitive daily or weekly activities may constitute user profiles. For example, a user's frequent command sequences may represent normative pattern of that user. To find normative patterns over dynamic data streams of unbounded length is challenging. For this, an unsupervised learning approach is proposed in our prior work by exploiting a compressed/quantized dictionary to model common behavior sequences. This work suffers scalability issues. Hence, in this paper, we propose and implement a MapReduce-based framework to construct a quantized dictionary. We show effectiveness of our distributed parallel solution on a benchmark dataset.","PeriodicalId":222111,"journal":{"name":"9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2013.254135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Users' repetitive daily or weekly activities may constitute user profiles. For example, a user's frequent command sequences may represent normative pattern of that user. To find normative patterns over dynamic data streams of unbounded length is challenging. For this, an unsupervised learning approach is proposed in our prior work by exploiting a compressed/quantized dictionary to model common behavior sequences. This work suffers scalability issues. Hence, in this paper, we propose and implement a MapReduce-based framework to construct a quantized dictionary. We show effectiveness of our distributed parallel solution on a benchmark dataset.
mapreduce引导的可扩展压缩字典构建,用于不断发展的重复序列流
用户每天或每周重复的活动可能构成用户档案。例如,用户频繁的命令序列可能表示该用户的规范模式。在无限长度的动态数据流中找到规范模式是具有挑战性的。为此,我们在之前的工作中提出了一种无监督学习方法,利用压缩/量化字典来模拟常见的行为序列。这项工作存在可伸缩性问题。因此,在本文中,我们提出并实现了一个基于mapreduce的框架来构建量化字典。我们在一个基准数据集上展示了分布式并行解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信