P. Parveen, Pratik Desai, B. Thuraisingham, L. Khan
{"title":"MapReduce-guided scalable compressed dictionary construction for evolving repetitive sequence streams","authors":"P. Parveen, Pratik Desai, B. Thuraisingham, L. Khan","doi":"10.4108/ICST.COLLABORATECOM.2013.254135","DOIUrl":null,"url":null,"abstract":"Users' repetitive daily or weekly activities may constitute user profiles. For example, a user's frequent command sequences may represent normative pattern of that user. To find normative patterns over dynamic data streams of unbounded length is challenging. For this, an unsupervised learning approach is proposed in our prior work by exploiting a compressed/quantized dictionary to model common behavior sequences. This work suffers scalability issues. Hence, in this paper, we propose and implement a MapReduce-based framework to construct a quantized dictionary. We show effectiveness of our distributed parallel solution on a benchmark dataset.","PeriodicalId":222111,"journal":{"name":"9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2013.254135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Users' repetitive daily or weekly activities may constitute user profiles. For example, a user's frequent command sequences may represent normative pattern of that user. To find normative patterns over dynamic data streams of unbounded length is challenging. For this, an unsupervised learning approach is proposed in our prior work by exploiting a compressed/quantized dictionary to model common behavior sequences. This work suffers scalability issues. Hence, in this paper, we propose and implement a MapReduce-based framework to construct a quantized dictionary. We show effectiveness of our distributed parallel solution on a benchmark dataset.