V. R. Raju, V. Malsoru, K. Srinivas, B. Rani, G. Madhukar
{"title":"Nonlinear dynamical systems to study epileptic seizures and extract average amount of mutual information from encephalographs – Part I","authors":"V. R. Raju, V. Malsoru, K. Srinivas, B. Rani, G. Madhukar","doi":"10.18231/j.ijn.2022.050","DOIUrl":null,"url":null,"abstract":"In this study, we apply the non-linear dynamical systems theory for the assessment built on recurrence-quantification analysis technique for characterizing—differentiating non-linear electro encephalograph (EEG) signals dynamics. The technique offers convenient quantifiable data plus information over normal, tumultuous, or probability and statistical stochastic properties of inherent systems dynamics theory. The R.Q.A-established processes as the quantifiable mathematical features of non-linear electroencephalograph signals dynamics. Average amount of mutual information (AAMI) applied to compute highly applicable feature-manifestation sub-sets out of R.Q.A-built centered-features. The chosen features were then fed into the computer using artificial intelligence based neural net-works for clustering the data of encephalograph-signals to identify ictic(i.e.,ictal), inter ictal, followed by state of controls. The study is implemented by validating R.Q.A with a data base for various issues of categorization. Results showed that the combination of five selected features created on AAMI attained the precision of100% and proves dominance of R.Q.A. Nonlinear dynamical control systems theory and analysis techniques centered on R.Q.A can be used as an appropriate methodology for distinguishing the non-linear systems dynamics of encephalograph signals data also epileptic seizures tracing.","PeriodicalId":415114,"journal":{"name":"IP Indian Journal of Neurosciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IP Indian Journal of Neurosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18231/j.ijn.2022.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we apply the non-linear dynamical systems theory for the assessment built on recurrence-quantification analysis technique for characterizing—differentiating non-linear electro encephalograph (EEG) signals dynamics. The technique offers convenient quantifiable data plus information over normal, tumultuous, or probability and statistical stochastic properties of inherent systems dynamics theory. The R.Q.A-established processes as the quantifiable mathematical features of non-linear electroencephalograph signals dynamics. Average amount of mutual information (AAMI) applied to compute highly applicable feature-manifestation sub-sets out of R.Q.A-built centered-features. The chosen features were then fed into the computer using artificial intelligence based neural net-works for clustering the data of encephalograph-signals to identify ictic(i.e.,ictal), inter ictal, followed by state of controls. The study is implemented by validating R.Q.A with a data base for various issues of categorization. Results showed that the combination of five selected features created on AAMI attained the precision of100% and proves dominance of R.Q.A. Nonlinear dynamical control systems theory and analysis techniques centered on R.Q.A can be used as an appropriate methodology for distinguishing the non-linear systems dynamics of encephalograph signals data also epileptic seizures tracing.