{"title":"Security Test Generation by Answer Set Programming","authors":"Philipp Zech, M. Felderer, Basel Katt, R. Breu","doi":"10.1109/SERE.2014.22","DOIUrl":null,"url":null,"abstract":"Security testing still is a hard task, especially if focusing on non-functional security testing. The two main reasons behind this are, first, at the most a lack of the necessary knowledge required for security testing, second, managing the almost infinite amount of negative test cases, which result from potential security risks. To the best of our knowledge, the issue of the automatic incorporation of security expert knowledge, e.g., known vulnerabilities, exploits and attacks, in the process of security testing is not well considered in the literature. Furthermore, well-known \"de facto\" security testing approaches, like fuzzing or penetration testing, lack systematic procedures regarding the order of execution of test cases, which renders security testing a cumbersome task. Hence, in this paper we propose a new method for generating negative security tests by logic programming, which applies a risk analysis to establish a set of negative requirements for later test generation.","PeriodicalId":248957,"journal":{"name":"2014 Eighth International Conference on Software Security and Reliability","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Security testing still is a hard task, especially if focusing on non-functional security testing. The two main reasons behind this are, first, at the most a lack of the necessary knowledge required for security testing, second, managing the almost infinite amount of negative test cases, which result from potential security risks. To the best of our knowledge, the issue of the automatic incorporation of security expert knowledge, e.g., known vulnerabilities, exploits and attacks, in the process of security testing is not well considered in the literature. Furthermore, well-known "de facto" security testing approaches, like fuzzing or penetration testing, lack systematic procedures regarding the order of execution of test cases, which renders security testing a cumbersome task. Hence, in this paper we propose a new method for generating negative security tests by logic programming, which applies a risk analysis to establish a set of negative requirements for later test generation.