Youngsu Kwon, Jeongmin Yang, Yong Cheol Peter Cho, Kyoung-Seon Shin, Jaehoon Chung, Jinho Han, C. Lyuh, Hyun-Mi Kim, Chan Kim, Minseok Choi
{"title":"Function-Safe Vehicular AI Processor with Nano Core-In-Memory Architecture","authors":"Youngsu Kwon, Jeongmin Yang, Yong Cheol Peter Cho, Kyoung-Seon Shin, Jaehoon Chung, Jinho Han, C. Lyuh, Hyun-Mi Kim, Chan Kim, Minseok Choi","doi":"10.1109/AICAS.2019.8771603","DOIUrl":null,"url":null,"abstract":"State-of-the-art neural network accelerators consist of arithmetic engines organized in a mesh structure datapath surrounded by memory blocks that provide neural data to the datapath. While server-based accelerators coupled with server-class processors are accommodated with large silicon area and consume large amounts of power, electronic control units in autonomous driving vehicles require power-optimized, ‘AI processors’ with a small footprint. An AI processor for mobile applications that integrates general-purpose processor cores with mesh-structured neural network accelerators and high speed memory while achieving high-performance with low-power and compact area constraints necessitates designing a novel AI processor architecture. We present the design of an AI processor for electronic systems in autonomous driving vehicles targeting not only CNN-based object recognition but also MLP-based in-vehicle voice recognition. The AI processor integrates Super-Thread-Cores (STC) for neural network acceleration with function-safe general purpose cores that satisfy vehicular electronics safety requirements. The STC is composed of 16384 programmable nano-cores organized in a mesh-grid structured datapath network. Designed based on thorough analysis of neural network computations, the nano-core-in-memory architecture enhances computation intensity of STC with efficient feeding of multi-dimensional activation and kernel data into the nano-cores. The quad function-safe general purpose cores ensure functional safety of Super-Thread-Core to comply with road vehicle safety standard ISO 26262. The AI processor exhibits 32 Tera FLOPS, enabling hyper real-time execution of CNN, RNN, and FCN.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
State-of-the-art neural network accelerators consist of arithmetic engines organized in a mesh structure datapath surrounded by memory blocks that provide neural data to the datapath. While server-based accelerators coupled with server-class processors are accommodated with large silicon area and consume large amounts of power, electronic control units in autonomous driving vehicles require power-optimized, ‘AI processors’ with a small footprint. An AI processor for mobile applications that integrates general-purpose processor cores with mesh-structured neural network accelerators and high speed memory while achieving high-performance with low-power and compact area constraints necessitates designing a novel AI processor architecture. We present the design of an AI processor for electronic systems in autonomous driving vehicles targeting not only CNN-based object recognition but also MLP-based in-vehicle voice recognition. The AI processor integrates Super-Thread-Cores (STC) for neural network acceleration with function-safe general purpose cores that satisfy vehicular electronics safety requirements. The STC is composed of 16384 programmable nano-cores organized in a mesh-grid structured datapath network. Designed based on thorough analysis of neural network computations, the nano-core-in-memory architecture enhances computation intensity of STC with efficient feeding of multi-dimensional activation and kernel data into the nano-cores. The quad function-safe general purpose cores ensure functional safety of Super-Thread-Core to comply with road vehicle safety standard ISO 26262. The AI processor exhibits 32 Tera FLOPS, enabling hyper real-time execution of CNN, RNN, and FCN.