Route Prediction from GPS Trajectory and Road Data

Rathachai Chawuthai, Kampanart Kawachakul, Kittikom Boonrod, T. Threepak
{"title":"Route Prediction from GPS Trajectory and Road Data","authors":"Rathachai Chawuthai, Kampanart Kawachakul, Kittikom Boonrod, T. Threepak","doi":"10.1109/ICCAE56788.2023.10111441","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to create a route prediction model for multiple vehicles from GPS trajectory and road data. Since the baseline model is designed for a single car and it provides low performance for our experiment, our approach using the HDBSCAN clustering for route data preprocessing and the prediction model based on Viterbi algorithm, which is an extension of the Hidden Markov Model, provides the better performance in terms of Hit@K where K being 3. The result of our work demonstrates the feasibility to improve the smart city technology under the scope of smart mobility as well. (Abstract)","PeriodicalId":406112,"journal":{"name":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE56788.2023.10111441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach to create a route prediction model for multiple vehicles from GPS trajectory and road data. Since the baseline model is designed for a single car and it provides low performance for our experiment, our approach using the HDBSCAN clustering for route data preprocessing and the prediction model based on Viterbi algorithm, which is an extension of the Hidden Markov Model, provides the better performance in terms of Hit@K where K being 3. The result of our work demonstrates the feasibility to improve the smart city technology under the scope of smart mobility as well. (Abstract)
基于GPS轨迹和道路数据的路线预测
本文提出了一种利用GPS轨迹和道路数据建立多车路径预测模型的方法。由于基线模型是为单辆车设计的,因此在我们的实验中性能较低,因此我们使用HDBSCAN聚类进行路线数据预处理的方法和基于Viterbi算法的预测模型(该算法是隐马尔可夫模型的扩展)在Hit@K(其中K为3)方面提供了更好的性能。我们的研究结果也证明了在智能出行的范围内改进智慧城市技术的可行性。(抽象)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信