Coupling constrained-based flux sampling and clustering to tackle cancer metabolic heterogeneity

B. Galuzzi, Stefano Izzo, F. Giampaolo, Salvatore Cuomo, Marco E. Vanoni, L. Alberghina, C. Damiani, F. Piccialli
{"title":"Coupling constrained-based flux sampling and clustering to tackle cancer metabolic heterogeneity","authors":"B. Galuzzi, Stefano Izzo, F. Giampaolo, Salvatore Cuomo, Marco E. Vanoni, L. Alberghina, C. Damiani, F. Piccialli","doi":"10.1109/PDP59025.2023.00037","DOIUrl":null,"url":null,"abstract":"Characterizing the heterogeneity of cancer metabolism requires the knowledge of metabolic fluxes in different tumor types. These fluxes cannot be directly determined, especially at a sub-cellular level. Still, they can be obtained numerically through constraint-based steady-state models after integrating other high-throughput -omics data, such as transcriptomics. In this work, we proposed to study cancer metabolism through data analysis and machine learning methodologies. To this aim, we considered transcriptomics profiles for a large set of cancer cells. Using a core metabolic network as a scaffold, we generated many feasible flux distributions for each cancer cell. Then, we used cluster analysis to analyze these data. This preliminary analysis revealed three well-separated clusters having different metabolic behaviors.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing the heterogeneity of cancer metabolism requires the knowledge of metabolic fluxes in different tumor types. These fluxes cannot be directly determined, especially at a sub-cellular level. Still, they can be obtained numerically through constraint-based steady-state models after integrating other high-throughput -omics data, such as transcriptomics. In this work, we proposed to study cancer metabolism through data analysis and machine learning methodologies. To this aim, we considered transcriptomics profiles for a large set of cancer cells. Using a core metabolic network as a scaffold, we generated many feasible flux distributions for each cancer cell. Then, we used cluster analysis to analyze these data. This preliminary analysis revealed three well-separated clusters having different metabolic behaviors.
耦合基于约束的通量采样和聚类处理癌症代谢异质性
表征肿瘤代谢的异质性需要了解不同肿瘤类型的代谢通量。这些通量不能直接确定,特别是在亚细胞水平上。尽管如此,在整合其他高通量组学数据(如转录组学)后,它们可以通过基于约束的稳态模型在数值上获得。在这项工作中,我们提出通过数据分析和机器学习方法来研究癌症代谢。为此,我们考虑了大量癌细胞的转录组学特征。利用核心代谢网络作为支架,我们为每个癌细胞生成了许多可行的通量分布。然后,我们使用聚类分析对这些数据进行分析。这一初步分析揭示了三个分离良好的集群具有不同的代谢行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信