{"title":"An Improved Adaptive Algorithm for Controlling the Probabilities of Crossover and Mutation Based on a Fuzzy Control Strategy","authors":"Qing Li, X. Tong, Sijiang Xie, Guangjun Liu","doi":"10.1109/HIS.2006.12","DOIUrl":null,"url":null,"abstract":"An improved adaptive algorithm for controlling the probabilities of crossover and mutation with fuzzy logic is proposed in this paper. The changes of average fitness value and standard deviation between two continuous generations are selected as input and the changes of crossover probability and mutation probability are the output variables. Two adaptive scaling factors are introduced for normalizing the input variables and new fuzzy rules based on domain heuristic knowledge are investigated for adjusting the probabilities of crossover and mutation. Numerical simulation studies of three different test functions are carried out, and the simulation results show that the genetic algorithm with the proposed adaptive fuzzy controller exhibits improved search speed and quality.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
An improved adaptive algorithm for controlling the probabilities of crossover and mutation with fuzzy logic is proposed in this paper. The changes of average fitness value and standard deviation between two continuous generations are selected as input and the changes of crossover probability and mutation probability are the output variables. Two adaptive scaling factors are introduced for normalizing the input variables and new fuzzy rules based on domain heuristic knowledge are investigated for adjusting the probabilities of crossover and mutation. Numerical simulation studies of three different test functions are carried out, and the simulation results show that the genetic algorithm with the proposed adaptive fuzzy controller exhibits improved search speed and quality.