A batch data based PSO identification method for Hammerstein systems

Zhixin Wang, Dongqing Wang
{"title":"A batch data based PSO identification method for Hammerstein systems","authors":"Zhixin Wang, Dongqing Wang","doi":"10.1109/IAEAC47372.2019.8997869","DOIUrl":null,"url":null,"abstract":"For a single input-output Hammerstein model with a polynomial nonlinear part, the standard particle swarm optimization (PSO) method loses some accuracy, due to computing fitness only based on a set of input-output data in each iteration. Therefore, to promote the identification accuracy, this paper investigates a batch data based particle swarm optimization (BD-PSO) method to identify parameters of the system. The simulation results prove that the BDPSO method has a fast convergence speed and has a good estimation accuracy.","PeriodicalId":164163,"journal":{"name":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC47372.2019.8997869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a single input-output Hammerstein model with a polynomial nonlinear part, the standard particle swarm optimization (PSO) method loses some accuracy, due to computing fitness only based on a set of input-output data in each iteration. Therefore, to promote the identification accuracy, this paper investigates a batch data based particle swarm optimization (BD-PSO) method to identify parameters of the system. The simulation results prove that the BDPSO method has a fast convergence speed and has a good estimation accuracy.
基于批量数据的Hammerstein系统粒子群辨识方法
对于具有多项式非线性部分的单输入-输出Hammerstein模型,标准粒子群优化(PSO)方法由于每次迭代只基于一组输入-输出数据计算适应度而失去了一定的精度。因此,为了提高系统的辨识精度,本文研究了一种基于批量数据的粒子群优化(BD-PSO)方法来辨识系统参数。仿真结果表明,该方法收敛速度快,估计精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信