{"title":"Leveraging Graph to Improve Lexicon Enhanced Chinese Sequence Labelling","authors":"Kailan Zhang, Baopeng Zhang, Zhu Teng","doi":"10.1109/PAAP56126.2022.10010525","DOIUrl":null,"url":null,"abstract":"Recently BERT has been employed for encoding a sequence of input characters in state-of-the-art Chinese sequence labelling models. However, Chinese sequence labelling often faces the lack of explicit word boundaries, which is well-noticed and more challenging problem. To alleviate this problem, we adopt the containing relation between characters and self-matched words from external lexicon to construct graph and incorporate lexicon-based graph information into the lower layers of BERT. We evaluate our model on ten Chinese datasets of three classic tasks containing Named Entity Recognition, Word Segmentation and Part-of-Speech Tagging. The experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":336339,"journal":{"name":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP56126.2022.10010525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently BERT has been employed for encoding a sequence of input characters in state-of-the-art Chinese sequence labelling models. However, Chinese sequence labelling often faces the lack of explicit word boundaries, which is well-noticed and more challenging problem. To alleviate this problem, we adopt the containing relation between characters and self-matched words from external lexicon to construct graph and incorporate lexicon-based graph information into the lower layers of BERT. We evaluate our model on ten Chinese datasets of three classic tasks containing Named Entity Recognition, Word Segmentation and Part-of-Speech Tagging. The experimental results demonstrate the effectiveness of our proposed method.