{"title":"Methods for modifying matrix factorizations","authors":"G. Golub, P. Gill, W. Murray, M. Saunders","doi":"10.1090/S0025-5718-1974-0343558-6","DOIUrl":null,"url":null,"abstract":"In recent years several algorithms have appeared for modifying the factors of a matrix following a rank-one change. These methods have always been given in the context of specific applications and this has probably inhibited their use over a wider field. In this report several methods are described for modifying Cholesky factors. Some of these have been published previously while others appear for the first time. In addition, a new algorithm is presented for modifying the complete orthogonal factorization of a general matrix, from which the conventional QR factors are obtained as a special case. A uniform notation has been used and emphasis has been placed on illustrating the similarity between different methods.","PeriodicalId":250823,"journal":{"name":"Milestones in Matrix Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"266","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milestones in Matrix Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0025-5718-1974-0343558-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 266
Abstract
In recent years several algorithms have appeared for modifying the factors of a matrix following a rank-one change. These methods have always been given in the context of specific applications and this has probably inhibited their use over a wider field. In this report several methods are described for modifying Cholesky factors. Some of these have been published previously while others appear for the first time. In addition, a new algorithm is presented for modifying the complete orthogonal factorization of a general matrix, from which the conventional QR factors are obtained as a special case. A uniform notation has been used and emphasis has been placed on illustrating the similarity between different methods.