Combined control of multirate impulse processes in a cognitive map of COVID-19 morbidity

V. Romanenko, Y. Miliavskyi
{"title":"Combined control of multirate impulse processes in a cognitive map of COVID-19 morbidity","authors":"V. Romanenko, Y. Miliavskyi","doi":"10.20535/srit.2308-8893.2022.3.03","DOIUrl":null,"url":null,"abstract":"In this article, a cognitive map (CM) of COVID-19 morbidity in a given region was built. A general linear impulse process (IP) model in the CM was developed and measured, and unmeasured CM node coordinates were defined. The general IP model was decomposed into interrelated subsystems with measurable and unmeasurable node coordinates. For the subsystem with measurable node coordinates, multirate sampling of coordinates was conducted, resulting in the development of discrete dynamics models for quickly and slowly measured node coordinates. External controls were selected in IP models based on the possible variation of resources of node coordinates and CM weighting coefficients. IP control laws based on the variation of CM nodes and weight were designed. As a result, recurrent procedures for control generation in closed-loop control subsystems with multirate sampling were formulated. Experimental research on the control subsystems was carried out. It confirmed high efficiency for decreasing COVID-19 morbidity.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2022.3.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a cognitive map (CM) of COVID-19 morbidity in a given region was built. A general linear impulse process (IP) model in the CM was developed and measured, and unmeasured CM node coordinates were defined. The general IP model was decomposed into interrelated subsystems with measurable and unmeasurable node coordinates. For the subsystem with measurable node coordinates, multirate sampling of coordinates was conducted, resulting in the development of discrete dynamics models for quickly and slowly measured node coordinates. External controls were selected in IP models based on the possible variation of resources of node coordinates and CM weighting coefficients. IP control laws based on the variation of CM nodes and weight were designed. As a result, recurrent procedures for control generation in closed-loop control subsystems with multirate sampling were formulated. Experimental research on the control subsystems was carried out. It confirmed high efficiency for decreasing COVID-19 morbidity.
COVID-19发病率认知图中多速率脉冲过程的联合控制
本文建立了特定地区COVID-19发病率认知图(CM)。建立并测量了CM中的一般线性脉冲过程模型,定义了未测CM节点坐标。将通用IP模型分解为节点坐标可测和不可测的相互关联的子系统。对于具有可测节点坐标的子系统,进行了多速率的坐标采样,建立了快速和慢速测量节点坐标的离散动力学模型。在IP模型中,根据节点坐标资源和CM权重系数可能发生的变化选择外部控制。设计了基于CM节点和权值变化的IP控制律。建立了多速率采样闭环控制子系统控制生成的循环过程。对控制子系统进行了实验研究。证实了降低新冠肺炎发病率的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信