Zhihao Xu, Xuefeng Zhou, Taobo Cheng, Kezheng Sun, Dan Huang
{"title":"Adaptive task-space tracking for robot manipulators with uncertain kinematics and dynamics and without using acceleration","authors":"Zhihao Xu, Xuefeng Zhou, Taobo Cheng, Kezheng Sun, Dan Huang","doi":"10.1109/ROBIO.2017.8324494","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the task-space tracking problem for robot manipulators with uncertain kinematics and dynamics. Imprecise kinematic parameters would cause errors in the solution of inverse kinematics, and the closed-loop system remains nonlinear and coupled. At the same time, task-space velocity or joint acceleration are usually required, which implies an increase of the production cost. Therefore, an adaptive control method is proposed, neither task-space velocity nor joint acceleration are needed. The measurement of task-space velocity is avoided using a low-pass filter, and by defining a second order reference trajectory, the joint acceleration is also eliminated. Using Lyapunov theory, we have proved that the end-effector tracking errors can asymptotically converge to zero. Examples and numeral simulations are provided to validate the effectiveness of the proposed tracking method.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider the task-space tracking problem for robot manipulators with uncertain kinematics and dynamics. Imprecise kinematic parameters would cause errors in the solution of inverse kinematics, and the closed-loop system remains nonlinear and coupled. At the same time, task-space velocity or joint acceleration are usually required, which implies an increase of the production cost. Therefore, an adaptive control method is proposed, neither task-space velocity nor joint acceleration are needed. The measurement of task-space velocity is avoided using a low-pass filter, and by defining a second order reference trajectory, the joint acceleration is also eliminated. Using Lyapunov theory, we have proved that the end-effector tracking errors can asymptotically converge to zero. Examples and numeral simulations are provided to validate the effectiveness of the proposed tracking method.