Emmanuel Gooskens, Stijn Sackesyn, S. Masaad, J. Dambre, P. Bienstman
{"title":"Photonic Reservoir Computing for Wavelength Multiplexed Nonlinear Fiber Distortion Mitigation","authors":"Emmanuel Gooskens, Stijn Sackesyn, S. Masaad, J. Dambre, P. Bienstman","doi":"10.1109/SiPhotonics55903.2023.10141896","DOIUrl":null,"url":null,"abstract":"We seek to improve nonlinear fiber distortion mitigation for wavelength multiplexed telecommunications in terms of both processing speed and energy efficiency. We propose a photonic reservoir computing hardware implementation maximizing the chip footprint to processing power ratio by employing a single readout for all wavelengths.","PeriodicalId":105710,"journal":{"name":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPhotonics55903.2023.10141896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We seek to improve nonlinear fiber distortion mitigation for wavelength multiplexed telecommunications in terms of both processing speed and energy efficiency. We propose a photonic reservoir computing hardware implementation maximizing the chip footprint to processing power ratio by employing a single readout for all wavelengths.