{"title":"Spatial Models in Econometric Research","authors":"L. Anselin","doi":"10.1093/acrefore/9780190625979.013.643","DOIUrl":null,"url":null,"abstract":"Since the late 1990s, spatial models have become a growing addition to econometric research. They are characterized by attention paid to the location of observations (i.e., ordered spatial locations) and the interaction among them. Specifically, spatial models formally express spatial interaction by including variables observed at other locations into the regression specification. This can take different forms, mostly based on an averaging of values at neighboring locations through a so-called spatially lagged variable, or spatial lag. The spatial lag can be applied to the dependent variable, to explanatory variables, and/or to the error terms. This yields a range of specifications for cross-sectional dependence, as well as for static and dynamic spatial panels.\n A critical element in the spatially lagged variable is the definition of neighbor relations in a so-called spatial weights matrix. Historically, the spatial weights matrix has been taken to be given and exogenous, but this has evolved into research focused on estimating the weights from the data and on accounting for potential endogeneity in the weights.\n Due to the uneven spacing of observations and the complex way in which asymptotic properties are obtained, results from time series analysis are not applicable, and specialized laws of large numbers and central limit theorems need to be developed. This requirement has yielded an active body of research into the asymptotics of spatial models.","PeriodicalId":211658,"journal":{"name":"Oxford Research Encyclopedia of Economics and Finance","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Research Encyclopedia of Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acrefore/9780190625979.013.643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Since the late 1990s, spatial models have become a growing addition to econometric research. They are characterized by attention paid to the location of observations (i.e., ordered spatial locations) and the interaction among them. Specifically, spatial models formally express spatial interaction by including variables observed at other locations into the regression specification. This can take different forms, mostly based on an averaging of values at neighboring locations through a so-called spatially lagged variable, or spatial lag. The spatial lag can be applied to the dependent variable, to explanatory variables, and/or to the error terms. This yields a range of specifications for cross-sectional dependence, as well as for static and dynamic spatial panels.
A critical element in the spatially lagged variable is the definition of neighbor relations in a so-called spatial weights matrix. Historically, the spatial weights matrix has been taken to be given and exogenous, but this has evolved into research focused on estimating the weights from the data and on accounting for potential endogeneity in the weights.
Due to the uneven spacing of observations and the complex way in which asymptotic properties are obtained, results from time series analysis are not applicable, and specialized laws of large numbers and central limit theorems need to be developed. This requirement has yielded an active body of research into the asymptotics of spatial models.