Integrating multisensor noisy and fuzzy data

L. Hong, Gwo-Jieh Wang
{"title":"Integrating multisensor noisy and fuzzy data","authors":"L. Hong, Gwo-Jieh Wang","doi":"10.1109/MFI.1994.398457","DOIUrl":null,"url":null,"abstract":"This paper discusses centralized integration of multisensor noisy and fuzzy data, which employs both Kalman filtering and fuzzy arithmetic. Due to the property of fuzzy arithmetic, fuzziness of the parameters in a system under the extended operation will unlimitedly increase and finally reach an unacceptable range. We have previously adopted a new compression technique to solve this problem. This paper extends our work on the filtering of single sensor noisy and fuzzy data to integrating multisensor noisy and fuzzy data. An example is given to illustrate the effectiveness of the algorithm presented.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper discusses centralized integration of multisensor noisy and fuzzy data, which employs both Kalman filtering and fuzzy arithmetic. Due to the property of fuzzy arithmetic, fuzziness of the parameters in a system under the extended operation will unlimitedly increase and finally reach an unacceptable range. We have previously adopted a new compression technique to solve this problem. This paper extends our work on the filtering of single sensor noisy and fuzzy data to integrating multisensor noisy and fuzzy data. An example is given to illustrate the effectiveness of the algorithm presented.<>
集成多传感器噪声和模糊数据
本文采用卡尔曼滤波和模糊算法对多传感器噪声和模糊数据进行集中集成。由于模糊算法的特性,在扩展操作下,系统参数的模糊性会无限增加,最终达到一个不可接受的范围。我们以前采用了一种新的压缩技术来解决这个问题。本文将单传感器噪声和模糊数据的滤波工作扩展到集成多传感器噪声和模糊数据。算例说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信