Fuzzy Matching: Hardware Accelerated MPI Communication Middleware

Matthew G. F. Dosanjh, W. Schonbein, Ryan E. Grant, Patrick G. Bridges, S. Mahdieh Gazimirsaeed, A. Afsahi
{"title":"Fuzzy Matching: Hardware Accelerated MPI Communication Middleware","authors":"Matthew G. F. Dosanjh, W. Schonbein, Ryan E. Grant, Patrick G. Bridges, S. Mahdieh Gazimirsaeed, A. Afsahi","doi":"10.1109/CCGRID.2019.00035","DOIUrl":null,"url":null,"abstract":"Contemporary parallel scientific codes often rely on message passing for inter-process communication. However, inefficient coding practices or multithreading (e.g., via MPI_THREAD_MULTIPLE) can severely stress the underlying message processing infrastructure, resulting in potentially un-acceptable impacts on application performance. In this article, we propose and evaluate a novel method for addressing this issue: 'Fuzzy Matching'. This approach has two components. First, it exploits the fact most server-class CPUs include vector operations to parallelize message matching. Second, based on a survey of point-to-point communication patterns in representative scientific applications, the method further increases parallelization by allowing matches based on 'partial truth', i.e., by identifying probable rather than exact matches. We evaluate the impact of this approach on memory usage and performance on Knight's Landing and Skylake processors. At scale (262,144 Intel Xeon Phi cores), the method shows up to 1.13 GiB of memory savings per node in the MPI library, and improvement in matching time of 95.9%; smaller-scale runs show run-time improvements of up to 31.0% for full applications, and up to 6.1% for optimized proxy applications.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Contemporary parallel scientific codes often rely on message passing for inter-process communication. However, inefficient coding practices or multithreading (e.g., via MPI_THREAD_MULTIPLE) can severely stress the underlying message processing infrastructure, resulting in potentially un-acceptable impacts on application performance. In this article, we propose and evaluate a novel method for addressing this issue: 'Fuzzy Matching'. This approach has two components. First, it exploits the fact most server-class CPUs include vector operations to parallelize message matching. Second, based on a survey of point-to-point communication patterns in representative scientific applications, the method further increases parallelization by allowing matches based on 'partial truth', i.e., by identifying probable rather than exact matches. We evaluate the impact of this approach on memory usage and performance on Knight's Landing and Skylake processors. At scale (262,144 Intel Xeon Phi cores), the method shows up to 1.13 GiB of memory savings per node in the MPI library, and improvement in matching time of 95.9%; smaller-scale runs show run-time improvements of up to 31.0% for full applications, and up to 6.1% for optimized proxy applications.
模糊匹配:硬件加速的MPI通信中间件
当代并行科学代码通常依赖于进程间通信的消息传递。然而,低效的编码实践或多线程(例如,通过MPI_THREAD_MULTIPLE)会严重影响底层的消息处理基础设施,从而对应用程序性能产生潜在的不可接受的影响。在本文中,我们提出并评估了一种解决这一问题的新方法:“模糊匹配”。这种方法有两个组成部分。首先,它利用了大多数服务器类cpu包含向量操作来并行消息匹配的事实。其次,基于对代表性科学应用中点对点通信模式的调查,该方法通过允许基于“部分真理”的匹配,即通过识别可能的而不是精确的匹配,进一步提高了并行性。我们评估了这种方法对Knight’s Landing和Skylake处理器的内存使用和性能的影响。在规模上(262,144个Intel Xeon Phi内核),该方法显示MPI库中每个节点的内存节省高达1.13 GiB,匹配时间提高了95.9%;小规模运行显示,完整应用程序的运行时改进高达31.0%,优化代理应用程序的运行时改进高达6.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信