A* fast and scalable high-throughput sequencing data error correction via oligomers

F. Milicchio, I. Buchan, M. Prosperi
{"title":"A* fast and scalable high-throughput sequencing data error correction via oligomers","authors":"F. Milicchio, I. Buchan, M. Prosperi","doi":"10.1109/CIBCB.2016.7758117","DOIUrl":null,"url":null,"abstract":"Next-generation sequencing (NGS) technologies have superseded traditional Sanger sequencing approach in many experimental settings, given their tremendous yield and affordable cost. Nowadays it is possible to sequence any microbial organism or meta-genomic sample within hours, and to obtain a whole human genome in weeks. Nonetheless, NGS technologies are error-prone. Correcting errors is a challenge due to multiple factors, including the data sizes, the machine-specific and non-at-random characteristics of errors, and the error distributions. Errors in NGS experiments can hamper the subsequent data analysis and inference. This work proposes an error correction method based on the de Bruijn graph that permits its execution on Gigabyte-sized data sets using normal desktop/laptop computers, ideal for genome sizes in the Megabase range, e.g. bacteria. The implementation makes extensive use of hashing techniques, and implements an A* algorithm for optimal error correction, minimizing the distance between an erroneous read and its possible replacement with the Needleman-Wunsch score. Our approach outperforms other popular methods both in terms of random access memory usage and computing times.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Next-generation sequencing (NGS) technologies have superseded traditional Sanger sequencing approach in many experimental settings, given their tremendous yield and affordable cost. Nowadays it is possible to sequence any microbial organism or meta-genomic sample within hours, and to obtain a whole human genome in weeks. Nonetheless, NGS technologies are error-prone. Correcting errors is a challenge due to multiple factors, including the data sizes, the machine-specific and non-at-random characteristics of errors, and the error distributions. Errors in NGS experiments can hamper the subsequent data analysis and inference. This work proposes an error correction method based on the de Bruijn graph that permits its execution on Gigabyte-sized data sets using normal desktop/laptop computers, ideal for genome sizes in the Megabase range, e.g. bacteria. The implementation makes extensive use of hashing techniques, and implements an A* algorithm for optimal error correction, minimizing the distance between an erroneous read and its possible replacement with the Needleman-Wunsch score. Our approach outperforms other popular methods both in terms of random access memory usage and computing times.
A*通过低聚物快速和可扩展的高通量测序数据纠错
下一代测序(NGS)技术在许多实验环境中已经取代了传统的Sanger测序方法,因为它们具有巨大的产量和可承受的成本。如今,可以在数小时内对任何微生物或元基因组样本进行测序,并在数周内获得完整的人类基因组。然而,NGS技术很容易出错。由于多种因素,包括数据大小、错误的机器特定和非随机特征以及错误分布,纠正错误是一项挑战。NGS实验中的误差会阻碍后续的数据分析和推断。这项工作提出了一种基于de Bruijn图的纠错方法,该方法允许使用普通台式/笔记本电脑在千兆字节大小的数据集上执行,这是兆级基因组大小的理想选择,例如细菌。该实现广泛使用了散列技术,并实现了最佳纠错的A*算法,最大限度地减少了错误读取与其可能的Needleman-Wunsch分数替换之间的距离。我们的方法在随机访问内存使用和计算时间方面都优于其他流行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信