Kyu Han Koh, H. Nickerson, Ashok R. Basawapatna, A. Repenning
{"title":"Early validation of computational thinking pattern analysis","authors":"Kyu Han Koh, H. Nickerson, Ashok R. Basawapatna, A. Repenning","doi":"10.1145/2591708.2591724","DOIUrl":null,"url":null,"abstract":"End-user game design affords teachers a unique opportunity to integrate computational thinking concepts into their classrooms. However, it is not always apparent in game and simulation projects what computational thinking-related skills students have acquired. Computational Thinking Pattern Analysis (CTPA) enables teachers to visualize which of nine specific skills students have mastered in game design that can then be used to create simulations. CTPA has the potential to automatically recognize and calculate student computational thinking skills, as well as to map students' computational thinking skill progression, as they proceed through the curriculum. The current research furthers knowledge of CTPA by exploring its validity based on how its performance correlates to human grading of student games. Initial data from this validation study indicates that CTPA correlates well with human grading and that it can even be used to predict students' future achievement levels given their current skill progression, making CTPA a potentially invaluable computational thinking evaluation tool for teachers.","PeriodicalId":334476,"journal":{"name":"Annual Conference on Innovation and Technology in Computer Science Education","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Conference on Innovation and Technology in Computer Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591708.2591724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
End-user game design affords teachers a unique opportunity to integrate computational thinking concepts into their classrooms. However, it is not always apparent in game and simulation projects what computational thinking-related skills students have acquired. Computational Thinking Pattern Analysis (CTPA) enables teachers to visualize which of nine specific skills students have mastered in game design that can then be used to create simulations. CTPA has the potential to automatically recognize and calculate student computational thinking skills, as well as to map students' computational thinking skill progression, as they proceed through the curriculum. The current research furthers knowledge of CTPA by exploring its validity based on how its performance correlates to human grading of student games. Initial data from this validation study indicates that CTPA correlates well with human grading and that it can even be used to predict students' future achievement levels given their current skill progression, making CTPA a potentially invaluable computational thinking evaluation tool for teachers.