{"title":"Prototyping an S-Band Conformal Line Array Antenna on a Partial Wing Surface","authors":"Alexandra Ford","doi":"10.1109/IEEECONF35879.2020.9329463","DOIUrl":null,"url":null,"abstract":"This paper presents the design, prototyping, and testing of an S-Band conformal array on a partial wing surface. The array elements are series fed microstrip patch antennas fabricated entirely through additive manufacturing (AM) technology using a combination of fused deposition modeling and thermal spray. A robust material set of ULTEM 9085 and copper alloy is used for a good balance of mechanical/environmental robustness and RF performance, while also offering a viable path forward for a future fielded design. The focus of this paper is on AM multi-material fabrication, fundamental print settings and material characterization, and antenna testing. AM characterization coupons are utilized to improve the accuracy of the RF antenna model, which showed excellent agreement with the prototype measurements.","PeriodicalId":135770,"journal":{"name":"2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF35879.2020.9329463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design, prototyping, and testing of an S-Band conformal array on a partial wing surface. The array elements are series fed microstrip patch antennas fabricated entirely through additive manufacturing (AM) technology using a combination of fused deposition modeling and thermal spray. A robust material set of ULTEM 9085 and copper alloy is used for a good balance of mechanical/environmental robustness and RF performance, while also offering a viable path forward for a future fielded design. The focus of this paper is on AM multi-material fabrication, fundamental print settings and material characterization, and antenna testing. AM characterization coupons are utilized to improve the accuracy of the RF antenna model, which showed excellent agreement with the prototype measurements.