Huaxi Huang, Jingsong Xu, Jian Zhang, Qiang Wu, Christina Kirsch
{"title":"Railway Infrastructure Defects Recognition using Fine-grained Deep Convolutional Neural Networks","authors":"Huaxi Huang, Jingsong Xu, Jian Zhang, Qiang Wu, Christina Kirsch","doi":"10.1109/DICTA.2018.8615868","DOIUrl":null,"url":null,"abstract":"Railway power supply infrastructure is one of the most important components of railway transportation. As the key step of railway maintenance system, power supply infrastructure defects recognition plays a vital role in the whole defects inspection sub-system. Traditional defects recognition task is performed manually, which is time-consuming and high-labor costing. Inspired by the great success of deep neural networks in dealing with different vision tasks, this paper presents an end-to-end deep network to solve the railway infrastructure defects detection problem. More importantly, this paper is the first work that adopts the idea of deep fine-grained classification to do railway defects detection. We propose a new bilinear deep network named Spatial Transformer And Bilinear Low-Rank (STABLR) model and apply it to railway infrastructure defects detection. The experimental results demonstrate that the proposed method outperforms both hand-craft features based machine learning methods and classic deep neural network methods.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Railway power supply infrastructure is one of the most important components of railway transportation. As the key step of railway maintenance system, power supply infrastructure defects recognition plays a vital role in the whole defects inspection sub-system. Traditional defects recognition task is performed manually, which is time-consuming and high-labor costing. Inspired by the great success of deep neural networks in dealing with different vision tasks, this paper presents an end-to-end deep network to solve the railway infrastructure defects detection problem. More importantly, this paper is the first work that adopts the idea of deep fine-grained classification to do railway defects detection. We propose a new bilinear deep network named Spatial Transformer And Bilinear Low-Rank (STABLR) model and apply it to railway infrastructure defects detection. The experimental results demonstrate that the proposed method outperforms both hand-craft features based machine learning methods and classic deep neural network methods.