L. Yang, Shaojing Fu, Yuchuan Luo, Yongjun Wang, Wentao Zhao
{"title":"A Clustering Method of Encrypted Video Traffic Based on Levenshtein Distance","authors":"L. Yang, Shaojing Fu, Yuchuan Luo, Yongjun Wang, Wentao Zhao","doi":"10.1109/MSN53354.2021.00017","DOIUrl":null,"url":null,"abstract":"In order to detect the playback of illegal videos, it is necessary for supervisors to monitor the network by analyzing traffic from devices. However, many popular video sites, such as YouTube, have applied encryption to protect users’ privacy, which makes it difficult to analyze network traffic at the same time. Many researches suggest that DASH (Dynamic Adaptive Streaming over HTTP) will leak the information of video segmentation, which is related to the video content. Consequently, it is possible to analyze the content of encrypted video traffic without decryption. At present, most of the encrypted video traffic analysis adopts supervised learning methods, and there is little research on its unsupervised methods. Analysts are usually faced with unlabeled data, in reality, so the existing approaches will not work. The encrypted video traffic analysis methods based on unsupervised learning are required. In this paper, we proposed a clustering method based on Levenshtein distance for title analysis of encrypted video traffic. We also run a thorough set of experiments that verify the robustness and practicability of the method. As far as I am concerned, it is the first work to apply cluster analysis for encrypted video traffic analysis.","PeriodicalId":215772,"journal":{"name":"2021 17th International Conference on Mobility, Sensing and Networking (MSN)","volume":"41 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN53354.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In order to detect the playback of illegal videos, it is necessary for supervisors to monitor the network by analyzing traffic from devices. However, many popular video sites, such as YouTube, have applied encryption to protect users’ privacy, which makes it difficult to analyze network traffic at the same time. Many researches suggest that DASH (Dynamic Adaptive Streaming over HTTP) will leak the information of video segmentation, which is related to the video content. Consequently, it is possible to analyze the content of encrypted video traffic without decryption. At present, most of the encrypted video traffic analysis adopts supervised learning methods, and there is little research on its unsupervised methods. Analysts are usually faced with unlabeled data, in reality, so the existing approaches will not work. The encrypted video traffic analysis methods based on unsupervised learning are required. In this paper, we proposed a clustering method based on Levenshtein distance for title analysis of encrypted video traffic. We also run a thorough set of experiments that verify the robustness and practicability of the method. As far as I am concerned, it is the first work to apply cluster analysis for encrypted video traffic analysis.