Cassava Disease Detection Method Based on EfficientNet

Fei Gao, J. Sa, Zhuoer Wang, Zhong-Yuan Zhao
{"title":"Cassava Disease Detection Method Based on EfficientNet","authors":"Fei Gao, J. Sa, Zhuoer Wang, Zhong-Yuan Zhao","doi":"10.1109/icsai53574.2021.9664101","DOIUrl":null,"url":null,"abstract":"The monitoring method of cassava disease in this article is based on HSV color space and EfficientNet, which can improve the monitoring and early warning of cassava virus disease, avoid the transportation and selection of diseased stems, and provide the necessary detection technology to ensure the healthy production of cassava. The HSV color space is used for image preprocessing, which improves the detection accuracy of the target area and reduces the loss of information in the image preprocessing stage. The EfficientNet model trains the preprocessed leaf image and extracts multi-dimensional depth, width, and resolution features.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsai53574.2021.9664101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The monitoring method of cassava disease in this article is based on HSV color space and EfficientNet, which can improve the monitoring and early warning of cassava virus disease, avoid the transportation and selection of diseased stems, and provide the necessary detection technology to ensure the healthy production of cassava. The HSV color space is used for image preprocessing, which improves the detection accuracy of the target area and reduces the loss of information in the image preprocessing stage. The EfficientNet model trains the preprocessed leaf image and extracts multi-dimensional depth, width, and resolution features.
基于EfficientNet的木薯病害检测方法
本文提出的木薯病害监测方法基于HSV色空间和高效网,可以提高对木薯病毒病害的监测和预警,避免病茎的运输和选择,为保证木薯的健康生产提供必要的检测技术。利用HSV色彩空间对图像进行预处理,提高了目标区域的检测精度,减少了图像预处理阶段的信息丢失。effentnet模型对经过预处理的叶片图像进行训练,提取多维深度、宽度和分辨率特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信