{"title":"Machine Learning-based Classification of Ischemic and Non-Ischemic Exercise Stress Test ECG","authors":"Dibya Chowdhury, B. Neelapu, K. Pal, J. Sivaraman","doi":"10.22489/CinC.2022.276","DOIUrl":null,"url":null,"abstract":"Myocardial Ischemia (MI) is a fatal heart condition due to insufficient blood flow in the heart muscles, which may cause unexpected heart attacks. Exercise Stress Test (EST) Electrocardiogram (ECG) is a non-invasive diagnostic procedure that can help identify various disease conditions, including MI. This study aims to classify the ischemic and non-ischemic EST ECG using Machine Learning (ML) algorithms. EST ECGs for 152 patients (n=53 female) of mean age ($50 \\pm 11.92$ years) were used in this study. ST morphology changes, measured during pre-load, load, and recovery at $J+(40$, 60, and 80 ms) were utilized as input to 14 ML classifiers. 70% of the input data to the ML classifiers were considered as train data, and 30% of the input data as test. Random Forest (RF) was selected based on the most suitable output and was used to classify between ischemic and non-ischemic by considering the clinical features such as ST variations, Blood Pressure (BP), Metabolic equivalent (Mets), and Rate Pressure Product (RPP) as input for both lead-II and V5. The model accuracy, sensitivity, precision, and F1 score for lead-II were 93%, 89.17%, 93%, and 89.63%, respectively. For V5, the performance matrices were 91%, 80%, 95%, and 86.14%, respectively.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Myocardial Ischemia (MI) is a fatal heart condition due to insufficient blood flow in the heart muscles, which may cause unexpected heart attacks. Exercise Stress Test (EST) Electrocardiogram (ECG) is a non-invasive diagnostic procedure that can help identify various disease conditions, including MI. This study aims to classify the ischemic and non-ischemic EST ECG using Machine Learning (ML) algorithms. EST ECGs for 152 patients (n=53 female) of mean age ($50 \pm 11.92$ years) were used in this study. ST morphology changes, measured during pre-load, load, and recovery at $J+(40$, 60, and 80 ms) were utilized as input to 14 ML classifiers. 70% of the input data to the ML classifiers were considered as train data, and 30% of the input data as test. Random Forest (RF) was selected based on the most suitable output and was used to classify between ischemic and non-ischemic by considering the clinical features such as ST variations, Blood Pressure (BP), Metabolic equivalent (Mets), and Rate Pressure Product (RPP) as input for both lead-II and V5. The model accuracy, sensitivity, precision, and F1 score for lead-II were 93%, 89.17%, 93%, and 89.63%, respectively. For V5, the performance matrices were 91%, 80%, 95%, and 86.14%, respectively.