Improving Machine Learning based Groundwater Level Estimation using Geological Features

A. Lad, Khushali Patel, Soumya Soumya, Yash Solanki
{"title":"Improving Machine Learning based Groundwater Level Estimation using Geological Features","authors":"A. Lad, Khushali Patel, Soumya Soumya, Yash Solanki","doi":"10.1109/aimv53313.2021.9671011","DOIUrl":null,"url":null,"abstract":"Estimation of Groundwater level is crucial for managing water resources. Forecasting groundwater level changes can help determine the efficient utilisation of groundwater resources and drive water conservation efforts, especially in arid regions. Existing works have used machine learning techniques to estimate groundwater levels using meteorological data. However, they have restricted the scope of their research to areas with abundant, continuous time-series data. In this paper, we aim to address the issue of sparse data in estimating groundwater levels. This study explores a data-driven approach and thus does not introduce a new machine learning model. We expand the input parameters to incorporate geological and demographic data along with traditional meteorological data. We have collected data of the Kutch region in Gujarat, spanning 11 years with varying data availability at monitoring sites. Using techniques like Random Forest Regression and Neural Networks, we can improve the estimation of groundwater levels compared to using traditional features. We also analyse causal effects of different values of Geological parameters by extending the concept of treatment effect and provide interpretability of the estimation models. The results presented here indicate that factors like soil type and depth are essential in estimating groundwater level and can improve performance on sparse time-series data. The treatment effect analysis also provides results that conform to existing knowledge, thereby bridging the semantic gap between computer science and hydrogeology domains.","PeriodicalId":135318,"journal":{"name":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aimv53313.2021.9671011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of Groundwater level is crucial for managing water resources. Forecasting groundwater level changes can help determine the efficient utilisation of groundwater resources and drive water conservation efforts, especially in arid regions. Existing works have used machine learning techniques to estimate groundwater levels using meteorological data. However, they have restricted the scope of their research to areas with abundant, continuous time-series data. In this paper, we aim to address the issue of sparse data in estimating groundwater levels. This study explores a data-driven approach and thus does not introduce a new machine learning model. We expand the input parameters to incorporate geological and demographic data along with traditional meteorological data. We have collected data of the Kutch region in Gujarat, spanning 11 years with varying data availability at monitoring sites. Using techniques like Random Forest Regression and Neural Networks, we can improve the estimation of groundwater levels compared to using traditional features. We also analyse causal effects of different values of Geological parameters by extending the concept of treatment effect and provide interpretability of the estimation models. The results presented here indicate that factors like soil type and depth are essential in estimating groundwater level and can improve performance on sparse time-series data. The treatment effect analysis also provides results that conform to existing knowledge, thereby bridging the semantic gap between computer science and hydrogeology domains.
利用地质特征改进机器学习的地下水位估算
地下水位的估算对水资源管理至关重要。预测地下水位变化有助于确定地下水资源的有效利用,并推动水资源保护工作,特别是在干旱地区。现有的工作已经使用机器学习技术根据气象数据估计地下水水位。然而,他们将研究范围限制在具有丰富的连续时间序列数据的领域。在本文中,我们的目的是解决在估计地下水位的稀疏数据的问题。这项研究探索了一种数据驱动的方法,因此没有引入新的机器学习模型。我们扩展了输入参数,将地质和人口数据与传统气象数据结合起来。我们收集了古吉拉特邦库奇地区11年来的数据,监测站点的数据可用性各不相同。使用随机森林回归和神经网络等技术,与使用传统特征相比,我们可以改进地下水水位的估计。通过扩展处理效果的概念,分析了不同地质参数值的因果关系,并给出了估算模型的可解释性。本文的研究结果表明,土壤类型和深度等因素在地下水位估计中是必不可少的,并且可以提高在稀疏时间序列数据上的性能。处理效果分析也提供了符合现有知识的结果,从而弥合了计算机科学和水文地质领域之间的语义差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信