Improving accuracy of source level timing simulation for GPUs using a probabilistic resource model

Christoph Gerum, W. Rosenstiel, O. Bringmann
{"title":"Improving accuracy of source level timing simulation for GPUs using a probabilistic resource model","authors":"Christoph Gerum, W. Rosenstiel, O. Bringmann","doi":"10.1109/SAMOS.2015.7363655","DOIUrl":null,"url":null,"abstract":"After their success in the high performance and desktop market, Graphic Processing Units (GPUs), that can be used for general purpose computing are introduced for embedded systems on a chip (SOCs). Due to some advanced architectural features, like massive simultaneous multithreading, static performance analysis and high-level timing simulation are difficult to apply to code running on these systems. This paper extends a method for performance simulation of GPUs. The method uses automated performance annotations in the application's OpenCL C source code, and an extended performance model for derivation of a kernels runtime from metrics produced by the execution of annotated kernels. The final results are then generated using a probabilistic resource conflict model. The model reaches an accuracy of 90% on most test cases and delivers a higher average accuracy than previous methods.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

After their success in the high performance and desktop market, Graphic Processing Units (GPUs), that can be used for general purpose computing are introduced for embedded systems on a chip (SOCs). Due to some advanced architectural features, like massive simultaneous multithreading, static performance analysis and high-level timing simulation are difficult to apply to code running on these systems. This paper extends a method for performance simulation of GPUs. The method uses automated performance annotations in the application's OpenCL C source code, and an extended performance model for derivation of a kernels runtime from metrics produced by the execution of annotated kernels. The final results are then generated using a probabilistic resource conflict model. The model reaches an accuracy of 90% on most test cases and delivers a higher average accuracy than previous methods.
利用概率资源模型提高gpu源级时序仿真的精度
在高性能和台式机市场取得成功后,用于通用计算的图形处理单元(gpu)被引入到芯片上的嵌入式系统(soc)中。由于一些高级的体系结构特性,如大规模同步多线程、静态性能分析和高级时序模拟,很难应用于在这些系统上运行的代码。本文扩展了一种gpu性能仿真方法。该方法在应用程序的OpenCL C源代码中使用自动性能注释,并使用扩展的性能模型,从执行注释的内核产生的度量中派生内核运行时。然后使用概率资源冲突模型生成最终结果。该模型在大多数测试用例上达到了90%的准确率,并且比以前的方法提供了更高的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信