Ensemble learning with surrogate splits

M. Amasyali
{"title":"Ensemble learning with surrogate splits","authors":"M. Amasyali","doi":"10.1109/SIU.2017.7960149","DOIUrl":null,"url":null,"abstract":"Surrogate splits are used to classify test samples having missing values. In this work, they are used to produce different decisions from the same decision tree. In the popular ensemble algorithms, different sub-samples and sub-spaces are used to produce different decisions. But, in our approach, different versions of a test sample are generated by randomly deleting some features. For each version of the test sample, a different decision can be generated by using surrogate splits. 41 UCI datasets are used to compare original and surrogate split versions of the ensemble algorithms. Surrogate split versions have generally better performance than the original ones. The proposed method can be used within any ensemble algorithm using decision trees as its base learner.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Surrogate splits are used to classify test samples having missing values. In this work, they are used to produce different decisions from the same decision tree. In the popular ensemble algorithms, different sub-samples and sub-spaces are used to produce different decisions. But, in our approach, different versions of a test sample are generated by randomly deleting some features. For each version of the test sample, a different decision can be generated by using surrogate splits. 41 UCI datasets are used to compare original and surrogate split versions of the ensemble algorithms. Surrogate split versions have generally better performance than the original ones. The proposed method can be used within any ensemble algorithm using decision trees as its base learner.
具有代理分割的集成学习
代理分割用于对具有缺失值的测试样本进行分类。在这项工作中,它们被用于从同一决策树中产生不同的决策。在流行的集成算法中,使用不同的子样本和子空间来产生不同的决策。但是,在我们的方法中,通过随机删除一些特征来生成测试样本的不同版本。对于测试示例的每个版本,可以通过使用代理分割生成不同的决策。41个UCI数据集用于比较集成算法的原始和代理分割版本。代理分割版本通常比原始版本具有更好的性能。该方法可用于任何以决策树为基础学习器的集成算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信