Classification methods, reduced datasets and quality analysis applications

C. Alippi, P. Braione
{"title":"Classification methods, reduced datasets and quality analysis applications","authors":"C. Alippi, P. Braione","doi":"10.1109/CIMSA.2004.1397246","DOIUrl":null,"url":null,"abstract":"Modern industrial production lines are characterized by rapid dynamics, high noise levels, and low knowledge of the underlying physical phenomena. In these situations, inductive learning methods allow the system designer to infer a model of the relevant process phenomena by extracting information from experimental data. A wide range of inductive learning methods is available to the system designer, potentially ensuring different levels of accuracy on different problem domains. In this paper we consider the problem of designing an inductive classification system with optimal accuracy when domain knowledge is limited and the number of available experiments is small. By analyzing the formal properties of consistent learning methods and of accuracy estimators, we wish to convey to the reader the message that the common practice of aggressively pursuing error minimization with different training algorithms and classification families is unjustified. Our position is illustrated by analyzing a classification problem with industrial relevance.","PeriodicalId":102405,"journal":{"name":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2004.1397246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern industrial production lines are characterized by rapid dynamics, high noise levels, and low knowledge of the underlying physical phenomena. In these situations, inductive learning methods allow the system designer to infer a model of the relevant process phenomena by extracting information from experimental data. A wide range of inductive learning methods is available to the system designer, potentially ensuring different levels of accuracy on different problem domains. In this paper we consider the problem of designing an inductive classification system with optimal accuracy when domain knowledge is limited and the number of available experiments is small. By analyzing the formal properties of consistent learning methods and of accuracy estimators, we wish to convey to the reader the message that the common practice of aggressively pursuing error minimization with different training algorithms and classification families is unjustified. Our position is illustrated by analyzing a classification problem with industrial relevance.
分类方法,简化数据集和质量分析应用
现代工业生产线的特点是动态快,噪音高,对潜在的物理现象了解少。在这些情况下,归纳学习方法允许系统设计者通过从实验数据中提取信息来推断相关过程现象的模型。系统设计人员可以使用广泛的归纳学习方法,潜在地确保在不同的问题领域上不同程度的准确性。本文研究了在领域知识有限、实验数量少的情况下,如何设计具有最优准确率的归纳分类系统。通过分析一致性学习方法和准确性估计器的形式性质,我们希望向读者传达这样的信息:使用不同的训练算法和分类族积极追求误差最小化的常见做法是不合理的。我们的立场是通过分析一个与产业相关的分类问题来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信