Depth reduction for noncommutative arithmetic circuits

E. Allender, Jia Jiao
{"title":"Depth reduction for noncommutative arithmetic circuits","authors":"E. Allender, Jia Jiao","doi":"10.1145/167088.167226","DOIUrl":null,"url":null,"abstract":"We show that for every family of arithmetic circuits of polynomial size and degree over the algebra (Z*, max, concat ), there is an equivalent family of arithmetic circuits of depth log2 n. (The depth can be reduced to log n if unbounded fan-in is allowed.) This is the first depth-reduction result for arithmetic circuits Olrer a nonco~utative semiring, and it complements the lower bounds of [Ni91, K090] showing that depth reduction cannot be done in the general noncommutative setting. The (max,concat) semiring is of interest, because it characterizes certain classes of optimization problems [AJ92, Vi91]. In particular, our results show that OptSACi is contained in AC1. We also prove other results relating Boolean and arithmetic circuit complexity. We show that ACl has no more power than arithmetic circuits of polynomial size and degree n“(log log’) (improving the trivial bound of nOIIOg‘)). Connections are drawn between TCl and arithmetic circuits of polynomial size and degree.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We show that for every family of arithmetic circuits of polynomial size and degree over the algebra (Z*, max, concat ), there is an equivalent family of arithmetic circuits of depth log2 n. (The depth can be reduced to log n if unbounded fan-in is allowed.) This is the first depth-reduction result for arithmetic circuits Olrer a nonco~utative semiring, and it complements the lower bounds of [Ni91, K090] showing that depth reduction cannot be done in the general noncommutative setting. The (max,concat) semiring is of interest, because it characterizes certain classes of optimization problems [AJ92, Vi91]. In particular, our results show that OptSACi is contained in AC1. We also prove other results relating Boolean and arithmetic circuit complexity. We show that ACl has no more power than arithmetic circuits of polynomial size and degree n“(log log’) (improving the trivial bound of nOIIOg‘)). Connections are drawn between TCl and arithmetic circuits of polynomial size and degree.
非交换算术电路的深度缩减
我们证明了对于代数(Z*, max, concat)上的每一个多项式大小和次数的算术电路族,存在一个深度为log2n的等效算术电路族(如果允许无界扇入,深度可以减少到log n)。这是算术电路在非交换半环中的第一个深度约简结果,它补充了[Ni91, K090]的下界,表明深度约简不能在一般的非交换设置中完成。(max,concat)半循环很有趣,因为它表征了某些类型的优化问题[AJ92, Vi91]。特别地,我们的结果表明OptSACi包含在AC1中。我们还证明了有关布尔电路和算术电路复杂度的其他结果。我们证明了ACl并不比多项式大小和n”(log log ')度的算术电路更强大(改进nOIIOg '的平凡界))。在TCl和多项式大小、多项式次数的算术电路之间建立了联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信