Model parameters identification for excess oxygen by Standard Genetic Algorithm

K. Rajarathinam, J. Gomm, Dingli Yu, Ahmed Saad Abdelhadi
{"title":"Model parameters identification for excess oxygen by Standard Genetic Algorithm","authors":"K. Rajarathinam, J. Gomm, Dingli Yu, Ahmed Saad Abdelhadi","doi":"10.1109/IConAC.2016.7604918","DOIUrl":null,"url":null,"abstract":"In this paper, a realistic excess oxygen model parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The realistic excess oxygen model is developed by three sub-model; air-fuel ratio conversion model, dynamic continuous transfer function and excess oxygen look-up table to characterise the real excess oxygen plant's numerical data. The predetermined time constant approximation method is applied on 1st, 2nd, 3rd, 4th and 5th model orders for an initial value estimation with SGAs. For an optimal model order assessment and selection, the information criteria are applied. The simulation results assured that the 4th order continuous transfer function as a realistic model well characterises the real excess oxygen plant's response.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a realistic excess oxygen model parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The realistic excess oxygen model is developed by three sub-model; air-fuel ratio conversion model, dynamic continuous transfer function and excess oxygen look-up table to characterise the real excess oxygen plant's numerical data. The predetermined time constant approximation method is applied on 1st, 2nd, 3rd, 4th and 5th model orders for an initial value estimation with SGAs. For an optimal model order assessment and selection, the information criteria are applied. The simulation results assured that the 4th order continuous transfer function as a realistic model well characterises the real excess oxygen plant's response.
基于标准遗传算法的过量氧模型参数辨识
本文提出并论证了一种基于标准遗传算法(SGAs)的实际过量氧模型参数辨识方法。实际的过量氧模型分为三个子模型;用空燃比转换模型、动态连续传递函数和过量氧查找表来表征实际过量氧厂的数值数据。将预定时间常数近似法应用于1、2、3、4和5阶模型,用SGAs进行初值估计。为了最优的模型顺序评估和选择,应用了信息准则。仿真结果表明,所建立的4阶连续传递函数模型能较好地表征实际的超氧装置响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信