Bayesian and pairwise local similarity discriminant analysis

Peter Sadowski, L. Cazzanti, M. Gupta
{"title":"Bayesian and pairwise local similarity discriminant analysis","authors":"Peter Sadowski, L. Cazzanti, M. Gupta","doi":"10.1109/CIP.2010.5604118","DOIUrl":null,"url":null,"abstract":"We investigate three extensions to the generative similarity-based classifier called local similarity discriminant analysis (local SDA): a Bayesian approach to estimating the pmfs based on the assumption that similarities are multinomially distributed and on the Dirichlet prior distribution; a pairwise-similarity formulation of local SDA that accounts for all local pairwise similarities to estimate the pmfs; a combined Bayesian pairwise-similarity approach. We discuss how the proposed extensions afford more modeling flexibility than standard local SDA and less cumbersome model training than previously-published local SDA regularization strategies. Experiments with five benchmark similarity-based classification datasets show that the increased modeling flexibility and lighter computational burden of the proposed extensions are coupled with the good classification performance of the local SDA classification paradigm.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We investigate three extensions to the generative similarity-based classifier called local similarity discriminant analysis (local SDA): a Bayesian approach to estimating the pmfs based on the assumption that similarities are multinomially distributed and on the Dirichlet prior distribution; a pairwise-similarity formulation of local SDA that accounts for all local pairwise similarities to estimate the pmfs; a combined Bayesian pairwise-similarity approach. We discuss how the proposed extensions afford more modeling flexibility than standard local SDA and less cumbersome model training than previously-published local SDA regularization strategies. Experiments with five benchmark similarity-based classification datasets show that the increased modeling flexibility and lighter computational burden of the proposed extensions are coupled with the good classification performance of the local SDA classification paradigm.
贝叶斯和两两局部相似判别分析
我们研究了基于生成相似度的分类器的三种扩展,称为局部相似判别分析(local similarity discriminant analysis, local SDA):基于相似度多项式分布和Dirichlet先验分布的贝叶斯方法估计pmfs;局部SDA的两两相似度公式,它考虑了所有的局部两两相似度来估计pmfs;组合贝叶斯对相似方法。我们讨论了所提出的扩展如何提供比标准局部SDA更大的建模灵活性,以及比以前发布的局部SDA正则化策略更少的繁琐模型训练。在5个基于相似度的基准分类数据集上进行的实验表明,所提出的扩展在提高建模灵活性和减轻计算负担的同时,具有良好的局部SDA分类范式的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信