Optimal Eigenstructure Achievement with Robustness Guarantees

Robert F. Wilson, J. Cloutier
{"title":"Optimal Eigenstructure Achievement with Robustness Guarantees","authors":"Robert F. Wilson, J. Cloutier","doi":"10.23919/ACC.1990.4790874","DOIUrl":null,"url":null,"abstract":"A new aigenstructure. assignment procedure is presented. In this new method, the best eigenstructure achievable is attained by minimizing with respect to the eigenvalues and the inconsequential components of the desired eigenvectors. This is in contrast to existing techniques which fix the eigenvalues a priori, thereby freezing the subspaces within which the eigenvectors must reside. An added benefit of the technique is that the minimization can be performed subject to an algebraic Riccati constraint, thus providing the closed-loop system with the same gain and phase margins inherent in the linear quadratic regulator. With an estimator in the loop, the procedure can be modified to design a target feedback loop for loop transfer recovery, breaking the loop at either the plant's input or output. An example is given to illustrate the technique.","PeriodicalId":307181,"journal":{"name":"1990 American Control Conference","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1990.4790874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A new aigenstructure. assignment procedure is presented. In this new method, the best eigenstructure achievable is attained by minimizing with respect to the eigenvalues and the inconsequential components of the desired eigenvectors. This is in contrast to existing techniques which fix the eigenvalues a priori, thereby freezing the subspaces within which the eigenvectors must reside. An added benefit of the technique is that the minimization can be performed subject to an algebraic Riccati constraint, thus providing the closed-loop system with the same gain and phase margins inherent in the linear quadratic regulator. With an estimator in the loop, the procedure can be modified to design a target feedback loop for loop transfer recovery, breaking the loop at either the plant's input or output. An example is given to illustrate the technique.
具有鲁棒性保证的最优特征结构实现
一种新的基因结构。给出了分配程序。在这种新方法中,通过对特征值和期望特征向量的无关分量进行最小化来获得可实现的最佳特征结构。这与现有的先验固定特征值的技术形成对比,从而冻结特征向量必须驻留的子空间。该技术的另一个好处是可以在代数Riccati约束下进行最小化,从而为闭环系统提供与线性二次型调节器相同的增益和相位裕度。在环路中加入一个估计器后,可以对该过程进行修改,以设计一个用于环路传递恢复的目标反馈环路,在工厂的输入或输出处断开环路。给出了一个例子来说明该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信