Geometrical modification of wavelet SVM kernels and its application in microarray analysis

Hong Cai, Yufeng Wang
{"title":"Geometrical modification of wavelet SVM kernels and its application in microarray analysis","authors":"Hong Cai, Yufeng Wang","doi":"10.1109/GENSiPS.2011.6169467","DOIUrl":null,"url":null,"abstract":"The selection and design of appropriate kernel functions play a key role in effective support vector machine (SVM) leaning. A general strategy is to customize the existent kernel functions to fit into the data property and structure. Wavelet kernels have been developed to approximate arbitrary nonlinear functions for signal processing. In this paper, we propose novel wavelet kernels based on the Riemannian geometrical structure theory, by constructing a hyperplane with better spatial resolution. This wavelet kernel SVM approach was applied to the yeast time course microarray dataset and outperformed the traditional Gaussian kernel and polynomial kernel.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The selection and design of appropriate kernel functions play a key role in effective support vector machine (SVM) leaning. A general strategy is to customize the existent kernel functions to fit into the data property and structure. Wavelet kernels have been developed to approximate arbitrary nonlinear functions for signal processing. In this paper, we propose novel wavelet kernels based on the Riemannian geometrical structure theory, by constructing a hyperplane with better spatial resolution. This wavelet kernel SVM approach was applied to the yeast time course microarray dataset and outperformed the traditional Gaussian kernel and polynomial kernel.
小波支持向量机核的几何修正及其在微阵列分析中的应用
选择和设计合适的核函数是支持向量机有效学习的关键。一般的策略是定制现有的核函数以适应数据属性和结构。小波核已经发展到近似任意非线性函数的信号处理。本文基于黎曼几何结构理论,通过构造空间分辨率更高的超平面,提出了一种新的小波核。将小波核支持向量机方法应用于酵母时间过程微阵列数据集,优于传统的高斯核和多项式核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信