M. Wilson, M. Given, I. Timoshkin, S. Macgregor, T. Wang, M. Sinclair, K. Thomas, J. Lehr
{"title":"Weibull statistical analysis of impulse-driven surface breakdown data","authors":"M. Wilson, M. Given, I. Timoshkin, S. Macgregor, T. Wang, M. Sinclair, K. Thomas, J. Lehr","doi":"10.1109/PPC.2011.6191418","DOIUrl":null,"url":null,"abstract":"Surface breakdown of oil-immersed solids chosen to insulate high-voltage, pulsed-power systems is a problem that can lead to catastrophic failure. Statistical analysis of the breakdown voltages associated with such liquid-solid interfaces can reveal useful information to aid system designers in the selection of solid materials. Described in this paper are the results of a Weibull statistical analysis, applied to breakdown voltage data generated in gaps consisting of five different solid polymers immersed in mineral oil. Values of the location parameter γ provide an estimate of the applied voltage below which breakdown will not occur, and under uniform-field conditions, γ varied from 192 kV (480 kV/cm) for polypropylene to zero for ultra-high molecular weight polyethylene (i.e. the data for UHMWPE were better described by a two-parameter distribution). Longer times to breakdown were measured for UHMWPE when compared with the other materials. However, high values of the shape parameter β reported in the present paper suggest greater sensitivity to an increase in applied voltage - that is, the probability of breakdown increases more sharply with increasing applied voltage for UHMWPE compared to the other materials. Only PP consistently reflected a low value of β across the different sets of test conditions.","PeriodicalId":331835,"journal":{"name":"2011 IEEE Pulsed Power Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2011.6191418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Surface breakdown of oil-immersed solids chosen to insulate high-voltage, pulsed-power systems is a problem that can lead to catastrophic failure. Statistical analysis of the breakdown voltages associated with such liquid-solid interfaces can reveal useful information to aid system designers in the selection of solid materials. Described in this paper are the results of a Weibull statistical analysis, applied to breakdown voltage data generated in gaps consisting of five different solid polymers immersed in mineral oil. Values of the location parameter γ provide an estimate of the applied voltage below which breakdown will not occur, and under uniform-field conditions, γ varied from 192 kV (480 kV/cm) for polypropylene to zero for ultra-high molecular weight polyethylene (i.e. the data for UHMWPE were better described by a two-parameter distribution). Longer times to breakdown were measured for UHMWPE when compared with the other materials. However, high values of the shape parameter β reported in the present paper suggest greater sensitivity to an increase in applied voltage - that is, the probability of breakdown increases more sharply with increasing applied voltage for UHMWPE compared to the other materials. Only PP consistently reflected a low value of β across the different sets of test conditions.