A Feature Fusion Algorithm for Human Matching between Non-Overlapping Cameras

Xiaowei Lv, Qingjie Kong, Yuncai Liu
{"title":"A Feature Fusion Algorithm for Human Matching between Non-Overlapping Cameras","authors":"Xiaowei Lv, Qingjie Kong, Yuncai Liu","doi":"10.1109/CCPR.2008.23","DOIUrl":null,"url":null,"abstract":"Human matching is fundamental in human tracking over non-overlapping cameras. Fusing multiple features is an efficient way to increase the ratio of matching. In this paper, we present an algorithm of iterative widening fusion (IWF) to fuse the multiple features, including color histogram, UV chromaticity, major color spectrum histogram and scale-invariant features (SIFT). Also, the Bayesian framework, as a classical fusion method, is compared with the IWF algorithm. The experimental results indicated that the IWF algorithm obtained the matching accuracy better than Bayesian framework in most cases.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human matching is fundamental in human tracking over non-overlapping cameras. Fusing multiple features is an efficient way to increase the ratio of matching. In this paper, we present an algorithm of iterative widening fusion (IWF) to fuse the multiple features, including color histogram, UV chromaticity, major color spectrum histogram and scale-invariant features (SIFT). Also, the Bayesian framework, as a classical fusion method, is compared with the IWF algorithm. The experimental results indicated that the IWF algorithm obtained the matching accuracy better than Bayesian framework in most cases.
一种非重叠摄像机间人体匹配的特征融合算法
人体匹配是在非重叠摄像机上进行人体跟踪的基础。多特征融合是提高匹配率的有效方法。本文提出了一种迭代扩大融合(IWF)算法,用于融合颜色直方图、紫外色度、主光谱直方图和尺度不变特征(SIFT)等多种特征。并将贝叶斯框架作为一种经典的融合方法与IWF算法进行了比较。实验结果表明,在大多数情况下,IWF算法的匹配精度优于贝叶斯框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信