Active learning the weights of a RBF network

K. Sung, P. Niyogi
{"title":"Active learning the weights of a RBF network","authors":"K. Sung, P. Niyogi","doi":"10.1109/NNSP.1995.514877","DOIUrl":null,"url":null,"abstract":"We describe a principled strategy to sample functions optimally for function approximation tasks. The strategy works within a Bayesian framework and uses ideas from optimal experiment design to evaluate the potential utility of new data points. We consider an application of this general framework for active learning the weight coefficients of a Gaussian radial basis function (RBF) network. We also derive some sufficiency conditions on the learning problem for which there are analytical solution to the data sampling procedure.","PeriodicalId":403144,"journal":{"name":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","volume":"27 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1995.514877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We describe a principled strategy to sample functions optimally for function approximation tasks. The strategy works within a Bayesian framework and uses ideas from optimal experiment design to evaluate the potential utility of new data points. We consider an application of this general framework for active learning the weight coefficients of a Gaussian radial basis function (RBF) network. We also derive some sufficiency conditions on the learning problem for which there are analytical solution to the data sampling procedure.
主动学习RBF网络的权值
我们描述了一个原则性的策略,以抽样函数的最优函数逼近任务。该策略在贝叶斯框架内工作,并使用最优实验设计的思想来评估新数据点的潜在效用。我们考虑将这个通用框架应用于主动学习高斯径向基函数(RBF)网络的权系数。我们还得到了数据采样过程有解析解的学习问题的一些充分性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信