Reinforcement Learning for Cart Pole Inverted Pendulum System

A. Surriani, O. Wahyunggoro, A. Cahyadi
{"title":"Reinforcement Learning for Cart Pole Inverted Pendulum System","authors":"A. Surriani, O. Wahyunggoro, A. Cahyadi","doi":"10.1109/IEACon51066.2021.9654440","DOIUrl":null,"url":null,"abstract":"Recently, reinforcement learning considered to be the chosen method to solve many problems. One of the challenging problems is controlling dynamic behaviour systems. This paper used policy gradient to balance cart pole inverted pendulum. The purpose of this paper is to balance the pole upright with the movement of the cart. The paper employed two main policy gradient-based algorithms. The results show that PG using baseline has faster episodes than reinforce PG in the training process, reinforce PG algorithm got higher accumulative reward value than PG using baseline.","PeriodicalId":397039,"journal":{"name":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEACon51066.2021.9654440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, reinforcement learning considered to be the chosen method to solve many problems. One of the challenging problems is controlling dynamic behaviour systems. This paper used policy gradient to balance cart pole inverted pendulum. The purpose of this paper is to balance the pole upright with the movement of the cart. The paper employed two main policy gradient-based algorithms. The results show that PG using baseline has faster episodes than reinforce PG in the training process, reinforce PG algorithm got higher accumulative reward value than PG using baseline.
推车杆倒立摆系统的强化学习
近年来,强化学习被认为是解决许多问题的首选方法。其中一个具有挑战性的问题是控制动态行为系统。本文利用政策梯度来平衡车杆倒立摆。本文的目的是使杆与小车的运动保持平衡。本文采用了两种主要的基于策略梯度的算法。结果表明,在训练过程中,使用基线的PG算法比使用基线的PG算法具有更快的集数,并且强化PG算法比使用基线的PG算法获得更高的累计奖励值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信